Modeling Microbial Decomposition in Real 3D Soil Structures Using Partial Differential Equations
Doanh Nguyen-Ngoc, Babacar Leye, Olivier Monga, Patricia Garnier, Naoise Nunan
1International Joint Unity (UMI 209) UMMISCO, IRD, Bondy Cedex, France 2INRA, UMR, Environnent and Bigcrops, Thiverval Grignon, France 3School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Hanoi, Vietnam.
1International Joint Unity (UMI 209) UMMISCO, IRD, Bondy Cedex, France 2UMMISCO-Cameroon, International Joint Unity UMMISCO, University of Yaounde 1, Cameroon, IRD (Institut de Recherche pour le Developpement), University of Paris.
CNRS, UMR 7618-Biochemistery and Continenatal Areas Ecology, Thiverval-Grignon, France.
Laboratory of Numericalanalysis and Computer Science (LANI), Ummisco UMI 209, IRD, Saint Louis Unit, University Gaston Berger of Saint Louis, Saint-Louis, Senegal.
School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Hanoi, Vietnam.
DOI: 10.4236/ijg.2013.410A003   PDF    HTML     3,875 Downloads   6,279 Views   Citations

Abstract

Partial Differential Equations (PDEs) have been already widely used to simulate various complex phenomena in porous media. This paper is one of the first attempts to apply PDEs for simulating in real 3D structures. We apply this scheme to the specific case study of the microbial decomposition of organic matter in soil pore space. We got a 3D geometrical representation of the pore space relating to a network of volume primitives. A mesh of the pore space is then created by using the network. PDEs system is solved by free finite elements solver Freefem3d in the particular mesh. We validate our PDEs model to experimental data with 3D Computed Tomography (CT) images of soil samples. Regarding the current state of art on soil organic matter decay models, our approach allows taking into account precise 3D spatialization of the decomposition process by a pore space geometry description.

Share and Cite:

Nguyen-Ngoc, D. , Leye, B. , Monga, O. , Garnier, P. and Nunan, N. (2013) Modeling Microbial Decomposition in Real 3D Soil Structures Using Partial Differential Equations. International Journal of Geosciences, 4, 15-26. doi: 10.4236/ijg.2013.410A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Fang, P. Smith, J. U. Smith and J. B. Monrieff, “Incorporating Microorganisms as Decomposers into Models to Simulate Soil Organic Matter Decomposition,” Geoderma, Vol. 129, No. 3-4, 2005, pp. 139-146.
http://dx.doi.org/10.1016/j.geoderma.2004.12.038
[2] J. P. Schimel and M. N. Weintraub, “The Implications of Exoenzyme Activity on Microbial Carbon and Nitrogen Limitation in Soil: A Theoretical Model,” Soil Biology and Biochemistry, Vol. 35, No. 4, 2002, pp. 549-563.
http://dx.doi.org/10.1016/S0038-0717(03)00015-4
[3] Manzoni and Porporato, “Soil Carbon and Nitrogen Mineralization: Theory and Models across Scales,” Soil and Biochemistry, Vol. 41, No. 7, 2009, pp. 1355-1379.
[4] T. Long and D. Or, “Aquatic Habitats and Diffusion Constraints Affecting Microbial Coexistence in Unsatured Porous Media,” Water Resources Research, Vol. 41, No. 8, 2005, 10 p.
http://dx.doi.org/10.1029/2004WR003796
[5] I. Joachim, P. Christian, S. Thilo and K. Ellen, “Micro-Scale Modeling of Carbon Turnover Driven by Microbial Succession at a Biogeochemical Interface,” Soil Biology and Biochemistry, Vol. 40, No. 4, 2008, pp. 864-878.
http://dx.doi.org/10.1016/j.soilbio.2007.10.018
[6] S. D. Allison, “Cheaters, Diffusion and Nutrients Constrain Decomposition by Microbial Enzymes in Spatially Structured Environments,” Ecology Letters, Vol. 8, No. 6, 2005, pp. 626-635.
http://dx.doi.org/10.1111/j.1461-0248.2005.00756.x
[7] Y. A. Vetter, J. W. Deming, P. A. Jumars and B. B. Krieger-Brockett, “A Predictive Model of Bacterial Foraging by Means of Freely Released Extracellular Enzymes,” Microbial Ecology, Vol. 36, No. 1, 1998, pp. 75-92.
http://dx.doi.org/10.1007/s002489900095
[8] C. J. Moran and A. B. McBratney, “Acquisition and Analysis of Three Component Digital Images of Soil Structure,” Journal of Soil Science, Vol. 43, No. 3, 1992, pp. 541-549.
http://dx.doi.org/10.1111/j.1365-2389.1992.tb00159.x
[9] J. Bouma, P. A. Droogers and G. Boer, “Parameters for Describing Soil Macroporisity Derived from Staining Patterns,” Geoderma, Vol. 83, No. 3-4, 1998, pp. 293-308.
http://dx.doi.org/10.1016/S0016-7061(98)00005-6
[10] A. Ringrose-Voase, “Measurement of Soil Macropore Geometry by Image Analysis of Sections through Impregnated Soil,” Plant and Soil, Vol. 183, No. 1, 1996, pp. 27-47. http://dx.doi.org/10.1007/BF02185563
[11] Y. Capowiez, “Difference in Borrowing Behaviour 661 and Spatial Interaction between the Two Earthworm Species Aporrectodea nocturna and Allobophora chlorotica,” Biology and Fertility of Soils, Vol. 30, No. 4, 2000, pp. 341-346. http://dx.doi.org/10.1007/s003740050013
[12] O. Monga, N. F. Ngom and J. F. Delerue, “Representing Geometric Structures in 3D Tomography Soil Images: Application to Pore Space Modeling,” Computers and Geosciences, Vol. 33, No. 9, 2007, pp. 1140-1161.
http://dx.doi.org/10.1016/j.cageo.2006.11.015
[13] S. Peth, R. Horn, F. Beckmann, T. Donath, J. Fischer and A. J. M. Smucker, “Three Dimensional Quantification of Intra Aggregate Pore Space Features Using Synchrotron Radiation Based Microtomography,” Soil Science Society of America Journal, Vol. 72, No. 4, 2008, pp. 897-907.
http://dx.doi.org/10.2136/sssaj2007.0130
[14] O. Monga, M. Bousso, P. Garnier and V. Pot, “3d Geometrical Structures and Biological Activity: Application to Microbial Soil Organic Matter Decomposition in Pore Space,” Ecological Modelling, Vol. 216, No. 3-4, 2008, pp. 291-302.
http://dx.doi.org/10.1016/j.ecolmodel.2008.04.015
[15] A. M. Tartakovsky, T. D. Scheibe and P. Meakin, “Pore-Scale Model for Reactive Transport and Biomass Growth,” Journal of Porous Media, Vol. 12, No. 5, 2009, pp. 417-434. http://dx.doi.org/10.1615/JPorMedia.v12.i5.30
[16] R. E. Falconer, J. L. Bown, N. A. White and J. W. Crawford, “Biomass Recycling: A Key to Effcient Foraging by Fungal Colonies,” OIKOS, Vol. 116, No. 9, 2007, pp. 1558-1568. http://dx.doi.org/10.1111/j.0030-1299.2007.15885.x
[17] N. Marilleau, C. Cambier, A. Drogoul, J. L. Chotte, E. Perrier and E. Blanchart, “Multiscale MAS Modelling to Simulate the Soil Environment: Application to Soil Ecology,” Simulation Modelling Practice and Theory, Vol. 16, No. 7, 2008, pp. 736-745.
http://dx.doi.org/10.1016/j.simpat.2008.04.021
[18] S. Del Pino and O. Pironneau, “Asymptotic Analysis and Layer Decomposition for the Couplex Exercise,” Computational Geosciences, Vol. 8, No. 2, 2007, pp. 149-162.
http://dx.doi.org/10.1023/B:COMG.0000035076.46993.dd
[19] C. Dobrzynski, P. J. Frey, B. Mohamadi and O. Pironneau, “Fast and Accurate Simulations of Air-Cooled Structures,” Computer Methods applied in Mechanical Engineering, Vol. 195, 2006, pp. 3168-3180.
[20] N. F. Ngom, P. Garnier, O. Monga and S. Peth, “Extraction of Three Dimensional Soil Pore Space from Microtomography Images Using a Geometrical Approach,” Geoderma, Vol. 163, No. 1-2, 2011, pp. 127-134.
http://dx.doi.org/10.1016/j.geoderma.2011.04.013
[21] N. F. Ngom, O. Monga, M. M. O. Mohamed and P. Garnier, “3D Shape Extraction Segmentation and Representation of Soil Microstructures Using Generalized Cylinders,” Computers and Geosciences, Vol. 39, 2012, pp. 50-63. http://dx.doi.org/10.1016/j.cageo.2011.06.010
[22] O. Monga, M. Bousso, P. Garnier and V. Pot, “Using Pore Space 3d Geometrical Modelling to Simulate Biological Activity: Impact of Soil Structure,” Computers and Geosciences, Vol. 35, No. 9, 2009, pp. 1789-1801.
http://dx.doi.org/10.1016/j.cageo.2009.02.007
[23] J. D. Murray, “Mathematical Biology. I: An Introduction,” Springer, 2003, 551 p.
[24] P. J. Frey, H. Borouchaki and P. L. George, “3D Delaunay Mesh Generation Coupled with an Advancing-Front Approach,” Computer Methods in Applied Mechanics and Engineering, Vol. 157, No. 1-2, 1998, pp. 115-131.
http://dx.doi.org/10.1016/S0045-7825(97)00222-3
[25] P. L. George and H. Borouchaki, “Premières Expériences de Maillage Automatique par une Mthode de Delaunay Anisotrope en Trois Dimensions,” INRIA, 2002, 272 p.
[26] R. C. Weast, “Handbook of Chemistry and Physics 62nd Edition 1981-1982,” CRC Press, Inc., 1981, 1700 p.
[27] E. Coucheney, “Effets Combinés de Facteurs Climatiques et de la Diversité sur le Fonctionnement de Communautés Bactériennes: Respiration et Métabolomique,” Université Pierre et Marie Curie, 2009, 194 p.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.