Share This Article:

Electrochemical, Photophysical, and Magnetic Properties of Green Emitting bis(2,5-Hexyloxy)-Phenylene-alt-Thiophene Fluorescent Conducting Oligomer Addended Fullerene-Diol Dyad

Abstract Full-Text HTML Download Download as PDF (Size:1476KB) PP. 49-64
DOI: 10.4236/ijoc.2013.33A006    2,759 Downloads   4,259 Views   Citations


Towards the development of potential new organic photovoltaic and optoelectronic materials, a simple route to synthesize flexibly ether linked fullerene-bis[oligo-(phenylene-alt-thiophene)] and evaluation of electrochemical, photophysical and magnetic properties is presented. Flexible ether linking of oligo-phenylene-thiophene chain to 1, 2 C60(OH)2 is achieved employing Williamson’s ether synthesis. 7-chain phenylene-thiophene chain fluorescent conducting oligomer is synthesized using Grignard coupling reaction with preservation of bromo end groups. Oligomer is highly ordered and soluble in all organic solvents while on linking to fullerene-diol, solubility of adduct restricts only to dimethyl sulfoxide (DMSO). All the synthesized materials are characterized through spectroscopic techniques and molecular weight is determined by mass spectrometry and GPC. Properties of the material indicate the substantial effect of fullerene. High quenching in fluorescence intensity and strong paramagnetic property are observed in this material.



Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Singh, R. Jaiswal and T. Goswami, "Electrochemical, Photophysical, and Magnetic Properties of Green Emitting bis(2,5-Hexyloxy)-Phenylene-alt-Thiophene Fluorescent Conducting Oligomer Addended Fullerene-Diol Dyad," International Journal of Organic Chemistry, Vol. 3 No. 3A, 2013, pp. 49-64. doi: 10.4236/ijoc.2013.33A006.


[1] J. Modin, H. Johansson and H. Grennberg, “New Pyrazolino-and Pyrrolidino[60]fullerenes with Transition-Metal Chelating Pyridine Substitutents: Synthesis and Complexation to Ru(II),” Organic Letters, Vol. 7, No. 18, 2005, pp. 3977-3979.
[2] S. Campidelli, R. Deschenaux, A. Swartz, G. M. A. Rahman, D. M. Guldi, D. Milic, E. V’azquez and M. Prato, “A Dendritic Fullerene-Porphyrin Dyad,” Photochemical & Photobiological Sciences, Vol. 5, No. 12, 2006, pp. 1137-1141.
[3] P. Vivo, M. Ojala, V. Chukharev, A. Efimov and H. Lemmetyinen, “Role of a Phthalocyanine-Fullerene Dyad in Multilayered Organic Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 203, No. 2-3, 2009, pp. 125-130.
[4] J. Baffreau, L. Ordronneau, L. S. Leroy and P. Hudhomme, “Synthesis of Perylene-3,4-Mono(dicarboximide)-Fullerene C60 Dyads as New Light-Harvesting Systems,” Journal of Organic Chemistry, Vol. 73, No. 16, 2008, pp. 6142.
[5] W. B. Zhang, Y. Tu, R. Ranjan, R. M. V. Horn, S. Leng, J. Wang, M. J. Polce, C. Wesdemiotis, R. P. Quirk, G. R. Newkome and S. Z. D. Cheng, “Clicking Fullerene with Polymers: Synthesis of [60]Fullerene End-Capped Polystyrene,” Macromolecules, Vol. 41, No. 3, 2008, pp. 515-517.
[6] C. Wang, Z. X. Guo, S. Fu, W. Wu and D. Zhu, “Polymers Containing Fullerene or Carbon Nanotube Structures,” Progress in Polymer Science, Vol. 29, No. 11, 2004, p. 1079-1141.
[7] A. L. Ortiz, D. M. Rivera, A. J. Athans and L. Echegoyen, “Regioselective Addition of N-(4-Thiocyanatophenyl)pyrrolidine Addends to Fullerenes,” European Journal of Organic Chemistry, 2009, p. 3396.
[8] Z. Zhou, G. H. Sarova, S. Zhang, Z. Ou, F. T. Tat, K. M. Kadish, L. Echegoyen, D. M. Guldi, D. I. Schuster and S. R. Wilson, “Fullerene Polypyridine Ligands: Synthesis, Ruthenium Complexes, and Electrochemical and Photophysical Properties,” Chemistry-A European Journal, Vol. 12, No. 16, 2006, pp. 4241-4248.
[9] R. Singh and T. H. Goswami, “Photophysical and Optical Limiting Properties of Multifunctional Hemi-Ortho Ester Derivatives of Fullerenol: Effects of TBAH Doping, Fullerenol Concentration and Solvent Polarity,” Synthetic Metals, Vol. 161, No. 9-10, 2011, pp. 670-679.
[10] R. Singh and T. H. Goswami, “Effect of Nature of Addends and Ionic Dopant on Magnetic Properties of Multifunctional Star-Like Hemi-Ortho Ester Derivatives of Fullerenol,” Synthetic Metals, Vol. 161, No. 19-20, 2011, pp. 2070-2077.
[11] R. Singh and T. H. Goswami, “Highly Luminescent Multifunctional Hemi-Ortho Ester Derivatives of Fullerenol,” Synthetic Metals, Vol. 157, No. 22-23, 2007, pp. 951-955.
[12] R. Singh and T. H. Goswami, “Understanding of ThermoGravimetric Analysis to Calculate Number of Addends in Multifunctional Hemi-Ortho Ester Derivatives of Fullerenol,” Thermochim Acta, Vol. 513, No. 1-2, 2011, pp. 60-67.
[13] R. Singh and T. H. Goswami, “Synthesis and Evaluation of Thermal, Photophysical and Magnetic Properties of Novel Starlike Fullerene-Organosilane Macromolecules,” Journal of Organometallic Chemistry, Vol. 693, No. 11, 2008, pp. 2021-2032.
[14] R. Singh and T. H. Goswami, “Acid Catalyzed 1,2 Michael Addition Reaction: A Viable Synthetic Route in Designing Fullerene Core Starlike Macromolecule,” Journal of Physical Organic Chemistry, Vol. 21, No. 3, 2008, pp. 225-236.
[15] T. H. Goswami and R. Singh, “Recent Development of Fullerenol Reseach,” In: C. N. Kramer, Ed., Fullerene Research Advances, NOVA Science Publishers, New York, 2007, pp. 55-96.
[16] R. Singh and T. H. Goswami, “Thermal Analysis: A Unique Method to Estimate the Number of Substituents in Fullerene Derivatives,” Thermochim Acta, Vol. 419, No. 1-2, 2004, pp. 97-104.
[17] T. H. Goswami, B. Nandan, S. Alam and G. N. Mathur, “A Selective Reaction of Polyhydroxy Fullerene with Cycloaliphatic Epoxy Resin in Designing Ether Connected Epoxy Star Utilizing Fullerene as a Molecular Core,” Polymer, Vol. 44, No. 11, 2003, pp. 3209-3214.
[18] T. H. Goswami, R. Singh, S. Alam and G. N. Mathur, “One-Pot Synthesis of a Novel Water-Soluble FullereneCore Starlike Macromolecule via Successive Michael and Nucleophilic Addition Reaction,” Chemical Materials, Vol. 16, No. 12, 2004, pp. 2442-2448.
[19] M. S. Meier and J. Kiegiel, “Preparation and Characterization of the Fullerene Diols 1,2-C60(OH)2, 1,2-C70(OH)2, and 5,6-C70(OH)2,” Organic Letters, Vol. 3, No. 11, 2001, pp. 1717-1719.
[20] R. H. Lohwasser, J. Bandara and M. Thelakkat, “TailorMade Synthesis of Poly(3-hexylthiophene) with Carboxylic Endgroups and Its Application as a Polymer Sensitizer in Solid-State Dye-Sensitized Solar Cells,” Journal of Materials Chemistry, Vol. 19, 2009, pp. 4126-4130.
[21] J. U. Lee, A. Cirpan, T. Emrick, T. P. Russell and W. H. Jo, “Synthesis and Photophysical Property of Well-Defined Donor-Acceptordiblock Copolymer Based on Regioregular Poly(3-hexylthiophene) and Fullerene,” Journal of Materials Chemistry, Vol. 19, 2009, pp. 1483-1489.
[22] C. P. Chen, S. H. Chan, T. C. Chao, C. Ting and B. T. Ko, “Low-Bandgap Poly(Thiophene-Phenylene-Thiophene) Derivatives with Broaden Absorption Spectra for Use in High-Performance Bulk-Heterojunction Polymer Solar Cells,” Journal of the American Chemical Society, Vol. 130, No. 38, 2008, pp. 12828-12833.
[23] M. L. Blohm, J. E. Pikett and P. C. VanDort, “Synthesis, Characterization, and Stability of Poly(3,4-Dibutoxythiophenevinylene) Copolymers,” Macromolecules, Vol. 26, No. 11, 1993, pp. 2704-2710.
[24] S. A. Chen and C. C. Tsai, “Structure/Properties of Conjugated Conductive Polymers. 2. 3-Ether-Substituted Polythiophenes and Poly(4-Methylthiophenes),” Macromolecules, Vol. 26, No. 9, 1993, pp. 2234-2239.
[25] G. Gigli, G. Barbarella, L. Favaretto, F. Cacialli and R. Cingolani, “High-Efficiency Oligothiopene-Based LightEmitting Diodes,” Applied Physics Letters, Vol. 75, 1999, p. 439.
[26] J. L. Bredas, R. Silbey, D. S. Boudreaux and R. R. Chance, “Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems: Polyacetylene, Polyphenylene, Polythiophene, and Polypyrrole,” Journal of the American Chemical Society, Vol. 105, No. 22, 1983, pp. 6555-6559.
[27] D. M. de Leeuw, M. M. Simenon, A. R. Brown and R. E. F. Einerhand, “Stability of N-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices,” Synthetic Metals, Vol. 87, No. 1, 1997, pp.53-59.
[28] S. A. Ponomarenko, S. Kirchmeyer, A. Elschner, N. M. Alpatova, M. Halik, H. Klauk, U. Zschieschang and G. Schmid, “Decyl-End-Capped Thiophene-Phenylene Oligomers as Organic Semiconducting Materials with Improved Oxidation Stability,” Chemical Materials, Vol. 18, No. 2, 2006, pp. 579-586.
[29] S. Mohapatra, B. T. Holmes, C. R. Newman, C. F. Prendergast, C. D. Frisbie and M. D. Ward, “Organic ThinFilm Transistors Based on Tolyl-Substituted Oligothiophenes,” Advanced Functional Materials, Vol. 14, No. 6, 2004, pp. 605-609.
[30] Q. Zhang, J. Feng, K. Liu, D. Zhu, M. Yang, H. Ye and X. Liu, “Synthesis and Characterization of Novel Low Band Gap Polymers: Poly(heteroarylene methines),” Synthetic Metals, Vol. 156, No. 11-13, 2006, pp. 804-808.
[31] G. Louarn, J. Y. Mevellec, J. P. Buisson and S. Lefrant, “Experimental Ant Theoretical Study of Vibrational Properties of Polythiophène, Polyméthylthiophène and Polyoctylthiophène,” Journal de Chimie Physique, Vol. 89, 1992, p. 987.
[32] J. F. Pan, S. J. Chua and W. Huang, “Conformational Analysis (ab Initio HF/3-21G*) and Optical Properties of Poly(thiophene-phenylene-thiophene) (PTPT),” Chemical Physics Letters, Vol. 363, No. 1-2, 2002, pp. 18-24.
[33] J. Pei, W. L. Yu, W. Huang and A. J. Heeger, “A Novel Series of Efficient Thiophene-Based Light-Emitting Conjugated Polymers and Application in Polymer LightEmitting Diodes,” Macromolecules, Vol. 33, No. 7, 2000, pp. 2462-2471.
[34] F. Naso, F. Babudri, D. Colangiuli, G. M. Farinola, F. Quaranta, R. Rella, R. Tafuro and L. Valli, “Thin Film Construction and Characterization and Gas-Sensing Performances of a Tailored Phenylene-Thienylene Copolymer,” Journal of the American Chemical Society, Vol. 125, No. 30, 2003, pp. 9055-9061.
[35] S. J. Toal and T. C. Williams, “Polymer Sensors for Nitroaromatic Explosives Detection,” Journal of Materials Chemistry, Vol. 16, 2006, pp. 2871-2883.
[36] F. Meyer, A. J. Heeger and J. L. Bredas, “Fine Tuning of the Band Gap in Conjugated Polymers via Control of Block Copolymer Sequences,” The Journal of Chemical Physics, Vol. 97, No. 4, 1992, p. 2750.
[37] M. A. Loi, E. J. W List, C. Gadermaier, W. Graupner, G. Leising, G. Bongiovanni, A. Mura, J. J. Pireaux and K. Kaeriyama, “Optical Characterisation of Poly-2,5-diheptyl1,4-phenylene-alt-2,5-Thienylene,” Synthetic Metals, Vol. 111-112, 2000, pp. 519-522.
[38] R. A. J Janssen, L. Smilowitz, N. S. Sariciftci and D. Moses, “Triplet-State Photoexcitations of Oligothiophene Films and Solutions,” The Journal of Chemical Physics, Vol. 101, No. 3, 1994, p. 1787.
[39] G. Lanzzni, M. Nisoli, V. Magni, S. De Silvestri, G. Barbarella, M. Zambianchi and R. Tubino, “Femtosecond Spectral Relaxation of α-Conjugated Hexamethylsexithiophene in Solution,” Physical Review B, Vol. 51, No. 19, 1995, pp. 13770-13773.
[40] P. A. Liddell, J. P. Sunida, A. N. McPherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore and D. Gust, “Preparation and Photophysical Studies of Porphyrin-C60 Dyads,” Photochemistry and Photobiology, Vol. 60, No. 6, 1994, pp. 537-541.
[41] C. H. Lee, G. Yu, D. Moses, N. S. Sariciftci and A. J. Heeger, “Sensitization of the Photoconductivity of Conducting Polymers by C60: Photoinduced Electron Transfer,” Physical Review B, Vol. 48, No. 20, 1993, pp. 15425-15433.
[42] C. H. Lee, A. J. Janssen, N. S. Sariciftci and A. J. Heeger, “Direct Evidence of Photoinduced Electron Transfer in Conducting-Polymer-C60 Composites by Infrared Photoexcitation Spectroscopy,” Physical Review B, Vol. 49, No. 8, 1994, pp. 5781-5784.
[43] N. Negishi, K. Yamada, K. Takimiya, Y. Aso, T. Otsubo and Y. Harima, “Oligothiophene/Fullerene Dyads as Active Photovoltaic Materials,” Chemistry Letters, Vol. 32, No. 4, 2003, pp. 404-405.
[44] N. Negishi, K. Takimiya, T. Otsubo, Y. Harima and Y. Aso, ”Synthesis and Photovoltaic Effects of Oligothiophenes Incorporated with Two [60]Fullerenes,” Chemistry Letters, Vol. 33, No. 6, 2004, pp. 654-655.
[45] J. F. Nierengarten, “Fullerene-(π-Conjugated Oligomer) Dyads as Active Photovoltaic Materials,” Solar Energy Materials & Solar Cells, Vol. 83, No. 2-3, 2004, pp. 187-199.
[46] S. B. Lee, A. A. Zakhidov, I. I. Khairullin, V. Y. Sokolov, P. K. Khabibullaev, K. Tada, K. Yashimoto and K. Yoshino, “Ground State Charge Transfer in Fullerene-Polyalkylthiophene Composites: ESR and Iodine Doping Effect,” Synthetic Metals, Vol. 77, No. 1-3, 1996, pp. 155-159.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.