Share This Article:

From Sequential Processes to Multifragmentation in Proton Reactions with Gold

Abstract Full-Text HTML XML Download Download as PDF (Size:421KB) PP. 1504-1507
DOI: 10.4236/jmp.2013.411182    2,810 Downloads   3,881 Views   Citations

ABSTRACT

The distribution of relative angles between the intermediate mass fragments has been measured and analyzed for thermal multifragmentation in p + Au collisions at 2.1, 3.6 and 8.1 GeV. The analysis has been done on an event by event basis. The multibody Coulomb trajectory calculations of all charged particles have been performed starting with the initial break-up conditions given by the combined model with the revised intranuclear cascade (INC) followed by the statistical multifragmentation model. The measured correlation function was compared with the calculated one to find the actual time scale of the intermediate mass fragment (IMF) emission. It found transition from sequential evaporation for p(2.1 GeV) + Au to simultaneous multibody decay of a hot and expanded nuclear system in case of p(8.1 GeV) + Au.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Avdeyev, V. Karnaukhov, H. Oeschler, W. Karcz, V. Kirakosyan, P. Rukoyatkin, E. Norbeck and A. Botvina, "From Sequential Processes to Multifragmentation in Proton Reactions with Gold," Journal of Modern Physics, Vol. 4 No. 11, 2013, pp. 1504-1507. doi: 10.4236/jmp.2013.411182.

References

[1] J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin and K. Sneppen, Physics Report, Vol. 257, 1995, pp. 133-221. http://dx.doi.org/10.1016/0370-1573(94)00097-M
[2] O. Shapiro and D. H. E. Gross, Nuclear Physics A, Vol. 573, 1994, pp. 143-153.
http://dx.doi.org/10.1016/0375-9474(94)90018-3
[3] S. Yu. Shmakov, S. P. Avdeyev, V. A. Karnaukhov, V. D. Kuznetsov, L. A. Petrov, E. A. Cherepanov, V. Lips, R. Barth, H. Oeschler, A. S. Botvina, O. V. Bochkarev, L. V. Chulkov, E. A. Kuzmin, W. Karcz, W. Neubert and E. Norbeck, Physics Atomic Nuclei, Vol. 58, 1995, pp. 1735-1739.
[4] V. Lips, R. Barth, H. Oeschler, S. P. Avdeyev, V. A. Karnaukhov, W. D. Kuznetsov, L. A. Petrov, O. V. Bochkarev, L. V. Chulkov, E. A. Kuzmin, W. Karcz, W. Neubert, E. Norbeck and D. H. E. Gross, Physics Letters B, Vol. 338, 1994, pp. 141-146.
http://dx.doi.org/10.1016/0370-2693(94)91357-9
[5] V. K. Rodionov, S. P. Avdeyev, V. A. Karnaukhov, L. A. Petrov, V. V. Kirakosyan, P. A. Rukoyatkin, H. Oeschler, A. Budzanowski, W. Karcz, M. Janicki, O. V. Bochkarev, E. A. Kuzmin, L. V. Chulkov, E. Norbeck and A. S. Botvina, Nuclear Physics A, Vol. 700, 2002, pp. 457-468.
http://dx.doi.org/10.1016/S0375-9474(01)01307-0
[6] G. Wang, K. Kwiatkowski, D. S. Bracken, E. Renshaw Foxford, W.-C. Hsi, R. G. Korteling, R. Legran, K. B. Morley, E. C. Pollacco, V. E. Viola and C. Volant, Physical Review C, Vol. 57, 1998, pp. R2786-R2789.
http://dx.doi.org/10.1103/PhysRevC.57.R2786
[7] V. A. Karnaukhov, Physics of Particles and Nuclei, Vol. 37, 2006, pp. 165-193.
http://dx.doi.org/10.1134/S1063779606020018
[8] V. V. Kirakosyan, A. V. Simonenko, S. P. Avdeev, V. A. Karnaukhov, W. Karcz, I. Skwirczynska, B. Czech and H. Oeschler, Instruments and Experimental Techniques, Vol. 51, 2008, pp. 159-165.
http://dx.doi.org/10.1134/S0020441208020012
[9] V. D. Toneev, N. S. Amelin, K. K. Gudima and S. Yu. Sivolkov, Nuclear Physics A, Vol. 519, 1990, pp. 463c-478c. http://dx.doi.org/10.1016/0375-9474(90)90649-7

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.