A Summary of Optimal Methods for the Planning of Stand-alone Microgrid System

Abstract

This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable energy and reduce the cost of investment and operation. Next, the problems in the optimal planning for a stand-alone microgrid system are summarized, including the unique operational control targets, the flexible combination approaches and the operation strategies of distributed generation energy supply system, and the special requirements of the reliability of power supply quality factor from the different users. And then, centering on the operational control and the advanced energy management strategy, the optimal mathematical models and the solving methods, the reliability assessment approaches and the improvement measures of a stand-alone microgrid system, an overview of the general situation of the recent research at home and abroad and the limitations of the study are summarized. Finally, several problems, existing in the optimal planning of stand-alone microgrid system, to be urgently solved, are put forward.

Share and Cite:

L. Qiao, "A Summary of Optimal Methods for the Planning of Stand-alone Microgrid System," Energy and Power Engineering, Vol. 5 No. 4B, 2013, pp. 992-998. doi: 10.4236/epe.2013.54B190.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Vandenbergh, R. Geipel, M. Landau and P. Strauss, “Performance Evaluation of the Gaidoroumandra Minigrid with Distributed PV Generators,” 4th European PV-Hybrid and Mini-Grid Conference, Athens, 29-30th May 2008.
[2] K. L. Wang, Y. G. You and Y. Q. Zhang, “Energy Management System of Renewable Stand-lone Energy Power Generation System in an Island,” Automation of Electric Power Systems, Vol. 34, No. 14, 2010, pp. 13-17.
[3] C. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, “Smart Energy Management System for Optimal Microgrid EcoNomic Operation,” Renewable Power Generation, IET, Vol. 5, No. 3, 2011, pp. 258-267. doi:10.1049/iet-rpg.2010.0052
[4] X. P. Liu, M. Ding, Y. Y. Zhang and N. Z. Xu, “Dynamic EcoNomic Dispatch for Microgrids,” Proceedings of the CSEE, Vol. 31, No. 31, 2011, pp. 77-84.
[5] J. F. Manwell, A. Rogers, G. Hayman, C. T. Avelar and J. G. McGowan, et al., “Hybrid2—a Hybrid System Simulation Model: Theory Manual,” Renewable Energy Research Laboratory, University of Massachusetts, Massachusetts, 2006.
[6] R. H. Lasseter, “MicroGrids and Distributed Generation,” Journal of Energy Engineering American Society of Civil Engineers, Vol. 133, No. 3, 2007, pp. 144-149. doi:10.1061/(ASCE)0733-9402(2007)133:3(144)
[7] C. S. Wang, Z. X. Xiao and S. X. Wang, “Multiple Feedback Loop Control Scheme for Inverters of the Micro Source in Microgrids,” Transactions of China Electrotechnical Society, Vol. 24, No. 2, 2009, pp. 100-107.
[8] J. M. Guerrero, L. G. de Vicuńa, J. Matas, N. Berbel and J. Sosa, “Wireless-control Strategy for Parallel Operation of Distributed-generation Inverters,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, 2006, pp. 1461-1470 . doi:10.1109/TIE.2006.882015
[9] C. E. Jones, “Local Control of Micro Grids Using Energy Storage,” Ph.D. Thesis, University of Manchester, Manchester , 2007.
[10] S. Morozumi and K. Nara, “Recent Trend of New Type Power Delivery System and its Demonstrative Project in Japan,” IEEE Transactions on Power and Energy, Vol. 127, No. 7, 2007, pp. 770-775. doi:10.1541/ieejpes.127.770
[11] L. Guo, C. S. Wang, “Dynamical Simulation on MicroGrid with Different Types of Distributed Generations,” Automation of Electric Power Systems, Vol. 33, No. 2, 2009, pp. 82-86.
[12] C. D. Barley and C. B. Winn, “Optimal Dispatch Strategy in Remote Hybrid Power Systems,” Solar Energy, Vol. 58, No. 4-6, 1996, pp. 165-179. doi:10.1016/S0038-092X(96)00087-4
[13] G. Giannakoudis, A. I. Papadopoulos, P. Seferlis and V. Spyros, “Optimum Design and Operation Under Uncertainty of Power Systems Using Renewable Energy Sources and Hydrogen Storage,” International Journal of hydrogen energy, Vol. 35, No. 3, 2010, pp. 872-891. doi:10.1016/j.ijhydene.2009.11.044
[14] M. X. Liu,L. Guo and C. S. Wang, “Coordinated Operation Control Strategy for Stand-alone Wind-solar- diesel-battery Microgrid,” Automation of Electric Power Systems, Vol. 36, No. 15, 2012, pp. 1-6.
[15] B. D. Liu, R. G. Zhao and G. Wang, “Planning and Application of Uncertainty Thoery,” Tsinghua University Press, Beijing, 2003.
[16] Y. Yang, G. Wei, B. Zhou and X. Zhang, “Optimized Fuzzy Planning of the Distribution Network Including Distributed Generation,” Automation of Electric Power Systems, Vol. 34, No. 13, 2010, pp. 19-23.
[17] P. Arun, R. Banerjee and S. Bandyopadhyay, “Optimum Sizing of Photo-Voltaic Battery Systems Incorporating Uncertainty through Design Space Approach,” Solar Energy, Vol. 83, No. 7, 2009, pp. 1013-1025. doi:10.1016/j.solener.2009.01.003
[18] F. Zhang, Z. Cai and M. H. Yang, “Capacity Allocation of Rural Hybrid Generating System Based on Stochastic Chance Constrained Programming,” Transactions of the Chinese Society of Agricultural Engineering, Vol. 26, No. 3, 2010, pp. 267-271.
[19] H. A. M. Maghraby, M. H. Shwehdi and G. K. Al-Bassam, “Probabilistic Assessment of PhotoVoltaic (PV) Generation Systems,” IEEE Transactions on Power System, Vol. 17, No. 1, 2002, pp. 205-208. doi:10.1109/59.982215
[20] J. L. Bernal-Agustín, R. Dufo-López and D. M. Rivas-Ascaso, “Design of Isolated Hybrid Systems Minimizing Costs and Pollutant Emissions,” Renewable Energy, Vol. 31, No. 14, 2006, pp. 2227-2244. doi:10.1016/j.renene.2005.11.002
[21] G. J. Dalton, D. A. Lockington and T. E. Baldock, “Feasibility Analysis of Stand-alone Renewable Energy Supply Options for a Large Hotel,” Renewable energy, Vol. 33, No. 7, 2008, pp. 1475-1490. doi:10.1016/j.renene.2007.09.014
[22] M. L. Deshmuk and S. S. Deshmuk, “Modeling of Hybrid Renewable Energy Systems,” Renewable and Sustainable Energy Reviews, Vol. 12, No. 1, 2008, pp. 235-249. doi:10.1016/j.rser.2006.07.011
[23] R. Ba?os, F. Manza-No-Agugliaro, F. G. Montoya, C. Gil, and A. Alcayde, et al., “Optimizaiton Methods Applied to Renewable and Sustainable Energy: A Review,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 4, 2011, pp. 1753-1766.doi:10.1016/j.rser.2010.12.008
[24] R. Dufo-López and J. L. Bernal-Agustín, “Design and Control Strategies of PV–diesel Systems Using Genetic Algorithms,” Solar Energy, Vol. 79, No. 1, 2005, pp. 33-46.doi:10.1016/j.solener.2004.10.004
[25] H. Yang, W. Zhou and C. Lou, “Optimal Design and TechNo-ecoNomic Analysis of a Hybrid Solar-wind Power Generation System,” Applied Energy, Vol. 86, No. 2, 2009, pp. 163-169.doi:10.1016/j.apenergy.2008.03.008
[26] R. Carapel-lucci and L. GiordaNo, “Modeling and Optimization of an Energy Generation Island Based on Renewable TechNologies and Hydrogen Storage Systems,” International Journal of Hydrogen Energy, Vol. 37, No. 3, 2011, pp. 2081-2093.
[27] H. Yang, W. Zhou, L. Lu and Z. H. Fang, “Optimal Sizing Method for Stand-alone Hybrid Solar-wind System with LPSP TechNology by Using Genetic Algorithm,” Solar Energy, Vol. 82, No. 4, 2008, pp. 354-367. doi:10.1016/j.solener.2007.08.005
[28] R. Dufo-López, J. L. Bernal-Agustín, J. M. Yusta-Loyo, J. A. Dominguez-Navarro, and L. J. Ramirez-Rosado, et al., “Multi-objective Optimization Minimizing Cost and Life Cycle Emissions of Stand-alone PV-wind-diesel Systems with Batteries Storage,” Applied Energy, Vol. 88, No. 11, 2011, pp. 4033-4041. doi:10.1016/j.apenergy.2011.04.019
[29] H. L. Song, J. Y. Wu, L. Y. Ji, L. Z. Gao, Y. L. Liu, et al. “Multi-Objective Optimal Sizing of Stand-alone Hybrid Wind/pV System,” Transactions of China Electrotechnical Society, Vol. 26, No. 7, 2011, pp. 104-111.
[30] R. Dufo-López and J. L. Bernal-Agustín, “Optimization of Control Strategies for Stand-alone Renewable Energy Systems with Hydrogen Storage,” Renewable Energy, Vol. 32, No. 7, 2007, pp. 1102-1126. doi:10.1016/j.renene.2006.04.013
[31] W. Ouyang, “Distribution Network Planning with Distributed,” Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, 2009.
[32] J. C. Yu, F. J. Chi, K. Xu, S. W. Li and H. Liu, et al., “Analysis of the Impact of Distributed Generation on Power Grid,” Proceedings of the CSU-EPSA, Vol. 24, No. 1, 2012, pp. 138-141.
[33] M. Wang and M. Ding, “Distribution Network Planning Including Distributed Generation,” Proceedings of the CSU-EPSA, Vol. 16, No. 6, 2004, pp. 5-18, 23.
[34] X. S. Zhang, S. X. Zhang and Y. Yuan, “Grid Planning for Distribution Network with Distributed Wind Generators,” Power System Protection and Control, Vol. 40,No. 13, 2012, pp. 1-6.
[35] R. Billinton, Bagen and Y. Cui, “Reliability Evaluation of Small Stand-alone Wind Energy Conversion Systems Using a Time Series Simulation Model,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 150, No. 1, 2003, pp. 96-100.doi:10.1049/ip-gtd:20030068
[36] Bagen and R. Billinton, “Evaluation of Different Operating Strategies in Small Stand-Alone Power Systems,” IEEE Transactions on Energy Conversion,Vol. 20, No. 3, 2005, pp. 654-660. doi:10.1109/TEC.2005.847996
[37] C. Q. Liu and Y. Zhang, “Distribution Network Reliability Considering Distribution Generation,” Automation of Electric Power Systems, Vol. 31, No. 22, 2007, pp. 46-49.
[38] H. M. Wang, “Reliability Evaluation of Distribution System Including Distributed Generations,” Ph.D. Thesis, Tianjin University, Tianjin, 2012.
[39] M. H. J. Bollen, Y. Sun and G. W. Ault, “Reliability of Distribution Networks with DER Including Intentional Islanding,” International Conference on Future Power Systems, Amsterdam, Holland, November 2005, pp. 1-6.
[40] Y. Cheng, B. X. Zhou,N. Lin and X. Y. Wang, “Islanding Method in Distribution Networks with the Consideration of Load Management,” Proceedings of the CSU-EPSA, Vol. 24, No. 3, 2012, pp. 101-106, 115.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.