On the Wind and Turbulence in the Lower Atmosphere above Complex Terrain
George Jandieri, Alexander Surmava, Anzor Gvelesiani
.
DOI: 10.4236/ijg.2011.21002   PDF    HTML     4,152 Downloads   9,212 Views   Citations

Abstract

Numerical modeling and studies of the wind fields at the junction of three continents: over the complex terrains of the South-east Europe, Asia Minor, Middle East, Caucasus and over the Black, Caspian and Medi-terranean seas have been carried out for the first time. Traveling synoptic scale vortex wave generation and subsequent evolution of orographic vortices are discovered. Wind fields, spatial distribution of the coefficients of subgrid scale horizontal and vertical turbulence and the Richardson number are calculated. It is shown that the local relief, atmospheric hydrothermodynamics and air-proof tropopause facilitate the generation of β-mesoscale vortex and turbulence amplification in the vicinity of the atmospheric boundary layer and tropopause. Also turbulence parameters distribution in the troposphere has the same nature as in the stratosphere and mesosphere: turbulence coefficients, stratification of the vertical profiles of the Richardson number, thickness of the turbulent and laminar layers.

Share and Cite:

G. Jandieri, A. Surmava and A. Gvelesiani, "On the Wind and Turbulence in the Lower Atmosphere above Complex Terrain," International Journal of Geosciences, Vol. 2 No. 1, 2011, pp. 13-28. doi: 10.4236/ijg.2011.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. P. Weigel, F. K. Chow and M. W. Rotach, “On the Nature of Turbulent Kinetic Energy in a Steep and Narrow Alpine Valley,” Boundary-Layer Meteorology Springer Science-Business Media B.V., Vol. 123, 2006, pp. 177-199. doi:10.1007/s10546-006-9142-9
[2] S. Kirkwood, M. Mihalikova, T. N. Rao and K. Satheesan, “Turbulence Associated with Mountain Waves over Northern Scandinavia–a Case Study Using the ESRAD VHF Radar and the WRF Mesoscale Model,” Atmospheric Chemistry and Physics Discussions, Vol. 9, No. 5, 2009, pp. 20775-20817. doi:10.5194/acpd-9-20775-2009
[3] G. D. Nastrom, K. S. Gage and W. L. Ecklund, “Variability of Turbulence, 4-20 km, in Colorado and Alaska from MST Radar Observations,” Journal of Geophysical Research, Vol. 91, 1986, pp. 6722-6734. doi:10.1029/JD091iD06p06722
[4] W. K. Hocking and J. R?ttger, “The Structure of Turbulence in the Middle and Lower Atmosphere Seen by and Deduced from MF, HF and VHF Radar, with Special Emphasis on Small-Scale Features and Anisotropy,” Annales Geophysicae, Vol. 19, 2001, pp. 933-944. doi:10.5194/angeo-19-933-2001
[5] W. D. Smyth and W. R. Peltier, “The Transition between Kelvin-Helmholtz and Holmboe Instability: An Investigation of the Over-Reflection Hypothesis,” Journal of the Atmospheric Sciences, Vol. 46, No. 24, 1989, pp. 3698- 3720. doi:10.1175/1520-0469(1989)046<3698:TTBKAH>2.0.CO;2
[6] P. W. Chan, “Determination of Richardson number Profile from Remote Sensing Data and Its Aviation Application,” Proceedings 14th International Symposium for the Advancement of Boundary Layer Remote Sensing. IOP Conf. Series: Earth and Environmental Science 1, 012043, 2008. doi:10.1088/1755-1307/1/1/012043
[7] Yu. Zhao, X. P. Cui and S. Gao, “Richardson Number in a Moist Atrmosphere and Its Application in the Analysis of Heavy Rainfall Events,” Acta Meteorologica Sinica, Vol. 24, 2010, No 1, pp. 95-103.
[8] C. G. Lu and S. E. Koch, “Interaction of Upper-Tropo- spheric Turbulence and Gravity Waves Obtaned from Spectral Structure Function Analyses,” Journal of the Atmospheric Sciences, Vol. 65, No. 8, 2008, pp. 2676- 2690. doi:10.1175/2007JAS2660.1
[9] N. M. Gavrilov and 1. S. Fukao, “Numerical and the MU Radar Estimations of Gravity Wave Enhancement and Turbulent Ozone Fluxes Near the Tropopause,” Annales Geophysicae, Vol. 22, No. 11, 2004, pp. 3889-3898 and p. SRef-ID: 1432-0576/ag/2004-22-3889.
[10] G. Dutta, M. C. A. Kumar, P. V. Kumar, P. V. Rao, B. Bapiraju and H. A. Basha, “High Resolution Observations of Turbulence in the Troposphere and Lower Stratosphere over Gadanki,” Annales Geophysicae, Vol. 27, No. 6, 2009, pp. 2407-2415. doi:10.5194/angeo-27-2407-2009
[11] A. A. Kordzadze, A. A. Surmava, D. I. Demetrashvili, and V. G. Kukhalashvili, “Numerical Investigation of the Influence of the Caucasus Relief on the Distribution of Hydrometeorological Fields,” Izvestia, Atmospheric and Oceanic Physics, Vol. 43, No. 6, 2007, pp. 783-791. doi:10.1134/S0001433807060060
[12] G. I. Marchuk, “The Numerical Solution of the Problems of Dynamics of the Atmosphere and Ocean,” Hydrometeoizdat, Leningrad, 1974 (in Russian).
[13] L. N. Gutman, “Introduction to the Nonlinear Theory of Mesometeorological Processes in the Atmosphere,” Hydrometeoizdat, Leningrad, 1969 (in Russian).
[14] L. T. Matveev, “The course of General Meteorology, Physics of Atmosphere and Ocean,” Hydrometeoizdat, Leningrad, 1984 (in Russian).
[15] A. F. Chudnovski, “Heat Physics of Soils,” Nauka, Moscow, 1976 (in Russian).
[16] G. I. Marchuk, V. P. Dimnikov, V. B. Zalesnii, V. N. Likosov and V. Ya. Galin, “The Mathematical Simulation of General Circulation of the Atmosphere and Ocean,” Hydrometeoizdat, Leningrad, 1984 (in Russian).
[17] P. N. Belov, E. P. Borisenkov and B. D. Panin, “The Numerical Methods of Weather Forecast,” Hydrometeoizdat, Leningrad, 1989 (in Russian).
[18] F. G. Shuman and L. R. Hovermale, “An Operational Six-Layer Primitive Equation Model,” Journal of Applied Mechanics, Vol. 7, No. 4, 1968, pp 525-547.
[19] E. Palmen, C. W. Newton, “Atmospheric Circulation Systems”. Academic Press, New York and London, 1969.
[20] S. S. Zilitinkevich and A. S. Monin, “The Turbulence in Dynamical Models of the Atmosphere,” Nauka, Leningrad, 1971.
[21] G. I. Marchuk, V. P. Kochergin, A. S. Sarkisyan et al., “Mathematical Models of Ocean Circulation,” Nauka, Novosibirsk, 1980.
[22] A. L. Kazakov and G. L. Lazriev, “About Parameterization of the Surface Layer of the Atmosphere and Active Layer of the Soil,” Izvestia AN SSSR, Phizika Atmosfery i Okeana, Vol. 14, No. 3, 1978, pp. 257-265.
[23] K. I. Papinashvili, “Atmospheric Processes in Transcaucasia and Their Relation with Macrocirculation Processes Above the Territory Of Eurasia,” Hydrometeoizdat, Leningrad, 1963, p. 184.
[24] T. W. Troutman, D. B. Elson and M. A. Rose, “A Severe Weather Threads Checklist to Determine Pre-Storm Environment,” Internet available: www.srh.noaa.gov/ohx/?n=checklist
[25] “Bulk Richardson Number,” Wikipedia, the free encyclopedia. Internet available: http://www.mythical-buddies.com/index.php?q=Bulk_Richardson_number
[26] M. Kordzakhia, “The Climate of Georgia,” Publishing House of the Georgian Academy of Sciences, Tbilisi, 1961.
[27] “The Atlas of Excitement and a Wind of the Black Sea,” Gidrometeoizdat, Leningrad, 1969.
[28] “The Climate and Climatic Resources of Georgia,” Gidrometeoizdat, Leningrad, 1971.
[29] Yu. D. Chashechkin, “Stochasticity of Convective Flows in a Stratified Liquid. Non-Linear Waves: Stochasticity and Turbulence,” Gorky: AN SSSR, IPF, 1980, pp. 131- 139.
[30] E. V. Thrane et al., “Neutral Air Turbulence in the Upper Atmosphere Observed During the Energy Budget Campaign,” Journal of Atmosphere and Terrestrial Physics, Vol. 47, No. 1, 1985, pp. 243-264. doi:10.1016/0021-9169(85)90136-9
[31] F. J. Schmidlin, M. Carlson, D. Rees, D. Offermann, Philbrick, and H. U. Widdel, “Wind Structure and Variability in the Middle Atmosphere during the November 1980 Energy Budget Campaign,” Journal of Atmosphere and Terrestrial Physics, Vol. 47, 1985, pp. 183-193. doi:10.1016/0021-9169(85)90133-3
[32] A. I. Gvelesiani and A. T. Eliava, “On the Subrange of Buoyancy of the Turbulent Mesosphere,” Izv. RAN, FAO, Vol. 34, No. 2, 1998, pp. 241-244.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.