Experimental Study of Surface and Solution Properties of Gemini -conventional Surfactant Mixtures on Solubilization of Polycyclic Aromatic Hydrocarbon

Abstract

Experimental data are presented on the enhanced solubilities of fluorene (FLR) resulting from solubilization in aqueous solutions of two conventional surfactants: cationic cetyltrimethylammonium bromide (CTAB) , anionic sodium dodecyl sulfate (SDS), nonioinic polyethylene glycol dodecyl ether (Brij35) and a cationic gemini bis (hexadecyldimethylammonium) pentane dibromide (G5). The critical micellar concentration of surfactants was determined by surface tension measurements and aqueous solubilities of fluorene compound in surfactant solutions were measured spectrophotometrically. Solubilization of PAH compound commenced at the surfactant critical micelle concentration and was proportional to the concentration of surfactant in micelle. The results of the mixed systems were analyzed with the help of regular solution theory, in which the deviation of CMCexp values for mixed surfactant systems from CMCideal was measured by evaluating the interaction parameter, βm. Negative values of βm were observed in all equimolar binary systems which show synergism in the mixed micelle. Attraction force between two oppositely charged head groups lead the strongest synergism effect between cationic gemini and anionic conventional surfactant. In addition to molar solubilization ratio (MSR) solubilization efficiency is also quantified in terms of micelle-water partition coefficient (Km).

Share and Cite:

M. Kamil and H. Siddiqui, "Experimental Study of Surface and Solution Properties of Gemini -conventional Surfactant Mixtures on Solubilization of Polycyclic Aromatic Hydrocarbon," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 4B, 2013, pp. 17-25. doi: 10.4236/mnsms.2013.34B004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Zhang, W. J. Maier and R. M. Miller, Environmental Science Technology, Vol. 31, No. 8, 1997, pp. 2211-2217.doi:10.1021/es960687g
[2] S. Laha and R. G. Guthy, Environmental Science Technology, Vol. 25, 1991.
[3] M. B. Gu and S. K. Chang, “Biosensors & Bioelectronics,” Vol. 16, No. 9-12, 2001, pp. 667-674. doi:10.1016/S0956-5663(01)00230-5
[4] A. Mohamed and S. M. Mahfoodh, “Colloids Surfaces A: Physicochemical and Engineering Aspects,” Vol. 287, No. 1-3, 2005, pp. 44-50. doi:10.1016/j.colsurfa.2006.03.036
[5] L. A. Bernardez and S. Ghoshal, “Solubilization Kinetics for Polycyclic Aromatic Hydrocarbons Transferring from a Non-aqueous Phase Liquid to Non-ionic Surfactant Solutions, Journal of Colloid Interface Science, Vol. 320, 2008, pp. 298-306. doi:10.1016/j.jcis.2007.12.035
[6] J. C. Dur, R. Rama, H. Parola and V. Chaplin, Heterogeneous dissolution of benzo(a)pyrene by surfactant solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 162, No. 1-3, 1999, pp. 249-257. doi:10.1016/S0927-7757(99)00244-7
[7] D. Grasso, K. Subramaniam, J. J. Pignatello, Y. Yang and D. Ratte, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 194, 2001, pp. 65-74.doi:10.1016/S0927-7757(01)00800-7
[8] C. K. Ahn, S. H. Woo and J. M. Park, “Selective adsorption of phenanthrene in nonionic-anionic surfactant,” Chemical Engineering Journal, Vol. 158, No. 2, 2010, pp. 115-119. doi:10.1016/j.cej.2009.12.014
[9] M. Panda and Kabiruddin, J. Mol. Liq., Vol. 163, No. 2, 2001, pp. 93-98. doi:10.1016/j.molliq.2011.08.002
[10] M. Almgren, V. M. Garamus, L. Nordstierna, J. Luc-Blin and M. J. Stebe, Langmuir, Vol. 29, No. 36, 5355 (2010). doi:10.1021/la903764u
[11] G. B. Ray, S.Ghosh and S. P. Moulik, J. Chem. Sci., 122, 109 (2010). doi:10.1007/s12039-010-0011-1
[12] D. Tikariha, K. K. Ghosh, N. Barbero, P. Quagliotto and S. Ghosh, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 381, No. 1-3, 2011, pp. 61-69. doi:10.1016/j.colsurfa.2011.03.027
[13] J. R. Akbar, R. Deubry, D. G. Marangoni and S. D. Wettig, J. Mol. Liq., 88, 321 (2010).
[14] F. M. Menger and C. A. J. Littau, “Gemini-surfactants: synthesis and properties,” Journal of the American chemical society, Vol. 113, No. 4, 1991, pp. 1451-1452. doi:10.1021/ja00004a077
[15] B. S. Sekhon, Resonance, 42, (2004).
[16] K. S. Sharma, C. Rodgers, R. M. Palepu and A. K. Rakshit, Studies of Mixed Surfactant Solutions of Cationic Dimeric (Gemini) Surfactant with Nonionic Surfactant C12E6 in Aqueous Medium,” Journal of Colloid Interface Science, Vol. 268, No. 2, 2003, pp. 482-488. doi:10.1016/j.jcis.2003.07.038
[17] S. P. Moulik and S. Ghosh, “Surface Chemical and Micellization Behaviours of Binary and Ternary Mixtures of Amphiphiles (Triton X-100, Tween-80 and CTAB) in Aqueous Medium,” Journal of Molecular Liquids, Vol. 72, No. 1-3, 1997, pp. 145-161. doi.org/10.1016/S0167-7322(97)00036-6
[18] J. H. Clint, J. Chem. Soc Faraday Trans., Vol. 71, 1974, p. 1327.
[19] T. Joshi., J. Mata and P. Bahadur, “Micellization and Interaction of Anionic and Nonionic Mixed Surfactant Systems in Water,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 260, 209 (2005). doi.org/10.1016/j.colsurfa.2005.03.009
[20] D. N. Rubnigh, in: K. L. Mittal (Ed.)Solution Chemistry of Surfactants. Vol. 1, 1979, pp. 337-354. doi:10.1007/978-1-4615-7880-2_15
[21] K.J. Rao and S. Paria, Solubilization of Naphthalene in the Presence of Plant-Synthetic Mixed Surfactant Systems,” Journal of Physical Chemistry B, Vol. 113, 2009, p. 474.doi:10.1021/jp8071298
[22] M. J. Rosen, Surfactant and Interfacial Phenomena. Third ed., John Wiley & sons Inc .Publication, 2004.
[23] M. Almgren, F. Grieser, J. K. Thoms, Journal of the American Chemical Society, Vol. 101, 1979, p. 279. doi:10.1021/ja00496a001
[24] J.L- Li, B.H. Chen, Chem. Eng. Sci., Vol. 118, 2002, p. 2825.
[25] L. Zhu, Chemosphere, Vol. 53, 2003, p. 459. doi:10.1016/S0045-6535(03)00541-1
[26] O. Zheng, “Solubilization of Pyrene in Aqueous Micellar Solutions of Gemini Surfactants C12-s-C12 2Br,” Journal of Colloid Interface Science, Vol. 300, No. 2, 2006, pp. 749-754.doi:10.1016/j.jcis.2006.04.033v
[27] S. Paria, and P. K. Yuet, J. Am. Chem. Soc., Vol. 45, p. 3552, 2006.
[28] D. A. Edwards, R. G. Luithy and Z. Liu, “Solubilization of Polycyclic Aromatic Hydrocarbons in Micellar Nonionic Surfactant Solutions,” Environmental Science Technol, Vol. 25, No. 1, 1991, pp. 127-133. doi:10.1021/es00013a014
[29] S. Saito, “Solubilization Properties of Polymer-surfactant Complexes,” Journal of Colloid and Interface Science, Vol. 24, No. 2, 1967, pp. 227-234. doi:10.1016/0021-9797(67)90225-1
[30] J. Wei, G. Haung and C. An, “Efficiency of Single and Mixed Gemi-ni/conventional Micelles on Solubilization of Phenanthrene,” Journal of Chemical Engineering, Vol. 168, No. 1, 2011, pp. 201-207. doi:10.1016/j.cej.2010.12.063
[31] W. Zhou and L. Zhu, “Colloids and Surfaces A: Physicochemical and Engi-neering Aspects,” Colloids Surf. A: Physicochem and Engineering Aspects, Vol. 255, No. 1-3, 2005, pp. 145-152.doi:10.1016/j.colsurfa.2004.12.039
[32] C. Triener, M. Nortz and C. Vaution, Langmuir, Vol. 6, 1990, p. 127.
[33] W. J. Zhou and L. Z. Zhu, “Solubilization of pyrene by anionic–nonionic mixed surfactants,” Journal of Hazardous Materials, Vol. 109, No. 1-3, 2004, pp. 213-220. doi:10.1016/j.jhazmat.2004.03.018

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.