Share This Article:

Semi-Rigid Registration of 3D Points

Abstract Full-Text HTML Download Download as PDF (Size:370KB) PP. 25-29
DOI: 10.4236/jsip.2013.43B005    2,686 Downloads   3,868 Views  

ABSTRACT

In this paper, we proposed a method for semi-rigid changed 3D point clouds registration. We first segment the point clouds into individual segments and then the alignment energy costs of each segment are calculated. The rough initial transformation is estimated by minimizing the energy cost using integer programming. The final registration results are obtained by rigid alignments of separated corresponded segments. Experimental result with simulated point clouds demonstrate that the concept of semi-rigid registration works well.

 

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Lin, K. Sakai, T. Tamaki, B. Raytchev, K. Kaneda and K. Ichii, "Semi-Rigid Registration of 3D Points," Journal of Signal and Information Processing, Vol. 4 No. 3B, 2013, pp. 25-29. doi: 10.4236/jsip.2013.43B005.

References

[1] G. Dewaele, F. Devernay and R. Horaud, “Hand Motion from 3D Point Trajectories and a Smooth Surface Model,” ECCV, 2004.
[2] B. Allen, B. Curless and Z. Popovic, “The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans,” Proc. SIGGRAPH, 2003.
[3] W. Zeng, Y. Zeng, Y. Wang, X. Yin, X. Gu and D. Samaras, “3D Non-rigid Surface Matching and Registration Based on Holomorphic Differentials,” ECCV, 2008.
[4] Y. Liu, “Automatic Registration of Overlapping 3D Point Clouds Using Closest Points,” Image and Vision Computing, Vol. 24, No. 7, 2006, pp. 762-781. doi:10.1016/j.imavis.2006.01.009
[5] J. Salvi, C. Matabosch, D. Fofi and J. Forest, “A Review of Recent Range Image Registration Methods with Accuracy Evaluation,” Image and Vision Computing, Vol. 25, No. 5, 2007, pp. 578-596. doi:10.1016/j.imavis.2006.05.012
[6] B. Neuman, B. Sofman, A. Stentz and J. A. Bagnell, “Segmentation-Based Online Change Detection for Mobile Robots,” ICRA, 2011.
[7] G. K. Tam, Z. Cheng, Y. Lai, F. Langbein, Y. Liu, A. D. Marshall, R. Martin, X. Sun and P. Rosin, “Registration of 3D Point Clouds and Meshes: A Survey From Rigid to Non-Rigid,” IEEE Transactions on Visualization and Computer Graphics, 2012.
[8] B. Lin, Y. Ueno, K. Sakai, T. Tamak, B. Raytchev, K. Kaneda and K. Ichii, “Image Based Detection of 3D Scene Change,” IEEJ Transactions on Electronics, Information and Systems, Vol. 133, No. 1, 2013, pp. 103-110. doi:10.1541/ieejeiss.133.103
[9] H. Hontani and W. Wa-tanabe, “Point-Based Non-Rigid Surface Registration with Accuracy Estimation,” CVPR, 2010.
[10] Q. X. Huang, B. Adams, M. Wicke and L. J. Guibas, “Non-Rigid Registration Under Isometric Defomations,” Eurographics Symposium on Geometry Processing, 2008.
[11] H. Li, R. W. Sumner and M. Pauly, “Global Correspondence Optimization for Non-rigid Registration of Depth Scans,” Eurographics Symposium on Geometry Processing, 2008.
[12] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, 1991, pp. 239-256. doi:10.1109/34.121791
[13] J. R. Hurley and R. B. Cattell, “Producing Direct Rotation to Test a Hypothesized Factor Structure,” Behavioral Science, 1962.
[14] S. Sclaroff and A. Pentland, “Modal Matching for Correspondence and Recognition,” Compyter society, Vol. 17, No. 6, 1995, pp. 545-561. doi:10.1109/34.387502
[15] M. Pauly, N. J. Giesen, M. H. Gross and L. J. Guibas, “Example-based 3D Scan Completion,” Eurographics Symposium on Geometry Processing, 2005.
[16] B. Allen, B. Curless and Z. Popovic, “The Space of Human Body Shapes: Reconstruction and Parameterization from Range Scans,” Proc. SIGGRAPH, 2003.
[17] I. Eckstein, J. P. Pons, Y. Tong, C. C. J. Kuo and M. Desbrum, “Generalized Surface Flows for Mesh Processing,” Eurographics Symposium on Geometry Processing, 2007.
[18] D. Holz, S. Holzer, R. B. Rusu and S. Behnke, “Real-Time segmentation using RGB-D Cameras,” Proc. of RoboCup International Symposium, 2011.
[19] T. Stoyanov, M. Magnusson and A. J. Lilienthal, “Point Set Registration through Minimization of the L2 Distance between 3D-NDT Models,” ICRA, 2012.
[20] N. Snavely, S. M. Seitz and R. Szeliski, “Modeling the World from Internet Photo Collections,” International Journal of Computer Vision, Vol. 80, No. 2, 2008, pp. 189-210. doi:10.1007/s11263-007-0107-3
[21] J. Ryle and N. Hillier, “Alignment and 3D Scene Change Detection for Segmentation in Autonomous Earth Moving,” ICRA, 2011.
[22] Y. Furukawa and J. Ponce, “Accurate, Dense and Robust Multi-View Stereopsis,” Transactions Pattern Analysis Machine Intelligence, Vol. 32, No. 8, 2010, pp. 1362-1376. doi:10.1109/TPAMI.2009.161
[23] L. Torresani, V. Kolmogorov and C. Rother, “A Dual Decomposition Approach to Feature Correspondence,” Transactions Pattern Analysis Machine Intelligence, Vol. 35, No. 2, 2013, pp. 259-271. doi:10.1109/TPAMI.2012.105
[24] S. P. Bradley, A. C. Hax and T. L. Magnanti, “Applied Mathematical Programming,” Addison-Wesley, 1977.
[25] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,” ISMAR, 2007.
[26] Y. Sawada and H. Hontani, “A Study on Graphical Model Structure for Representing Statistical Shape Model of Point Distribution Model,” MICCAI, 2012.
[27] B. Amberg, S. Romdhani and T. Vetter, “Optimal Step Nonrigid ICP Algorithms for Surface Registration,” CVPR, 2007.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.