Share This Article:

Dialogue between estrogen receptor and E2F signaling pathways: The transcriptional coregulator RIP140 at the crossroads

Abstract Full-Text HTML Download Download as PDF (Size:212KB) PP. 45-54
DOI: 10.4236/abb.2013.410A3006    3,710 Downloads   5,807 Views   Citations

ABSTRACT

Estrogen receptors and E2F transcription factors are the key players of two nuclear signaling pathways which exert a major role in oncogenesis, particularly in the mammary gland. Different levels of dialogue between these two pathways have been deciphered and deregulation of the E2F pathway has been shown to impact the response of breast cancer cells to endocrine therapies. The present review focuses on the transcriptional coregulator RIP140/NRIP1 which is involved in several regulatory feed-back loops and inhibitory cross-talks between different nuclear signaling pathways. RIP140 regulates the transactivation potential of estrogen receptors and E2Fs and is also a direct transcriptional target of these transcription factors. Published data highlight the complex regulation of RIP140 expression at the transcriptional level and its potential role in transcription cross-talks. Indeed, a subtle regulation of RIP140 expression levels has important consequences on other transcription networks targeted by this coregulator. Another level of regulation implies titration mechanisms by which activation of a pathway leads to sequestration of the RIP140 protein and thus impinges other gene regulatory circuitries. Altogether, RIP140 occupies a place of choice in the dialogue between nuclear receptors and E2Fs, which could be highly relevant in various human pathologies such as cancer or metabolic diseases.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Lapierre, M. , Docquier, A. , Castet-Nicolas, A. , Jalaguier, S. , Teyssier, C. , Augereau, P. and Cavaillès, V. (2013) Dialogue between estrogen receptor and E2F signaling pathways: The transcriptional coregulator RIP140 at the crossroads. Advances in Bioscience and Biotechnology, 4, 45-54. doi: 10.4236/abb.2013.410A3006.

References

[1] Dahlman-Wright, K., Cavailles, V., Fuqua, S.A., Jordan, V.C., Katzenellenbogen, J.A., Korach, K.S., Maggi, A., Muramatsu, M., Parker, M.G. and Gustafsson, J.-A. (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacological Reviews, 58, 773-781. http://dx.doi.org/10.1124/pr.58.4.8
[2] Manavathi, B., Dey, O., Gajulapalli, V.N.R., Bhatia, R.S., Bugide, S. and Kumar, R. (2013) Derailed estrogen signaling and breast cancer: An authentic couple. Endocrine Reviews, 34, 1-32. http://dx.doi.org/10.1210/er.2011-1057
[3] Obiorah, I. and Jordan, V.C. (2011) Progress in endocrine approaches to the treatment and prevention of breast cancer. Maturitas, 70, 315-321. http://dx.doi.org/10.1016/j.maturitas.2011.09.006
[4] Levin, E.R. (2011) Minireview: Extranuclear steroid receptors: Roles in modulation of cell functions. Molecular Endocrinology (Baltimore, Md.), 25, 377-384. http://dx.doi.org/10.1210/me.2010-0284
[5] Le Romancer, M., Poulard, C., Cohen, P., Sentis, S., Renoir, J.-M. and Corbo, L. (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocrine Reviews, 32, 597-622. http://dx.doi.org/10.1210/er.2010-0016
[6] Chen, H.-Z., Tsai, S.-Y. and Leone, G. (2009) Emerging roles of E2Fs in cancer: An exit from cell cycle control. Nature Reviews Cancer, 9, 785-797. http://dx.doi.org/10.1038/nrc2696
[7] Indovina, P., Marcelli, E., Casini, N., Rizzo, V. and Giordano, A. (2013) Emerging roles of RB family: New defense mechanisms against tumor progression. Journal of Cellular Physiology, 228, 525-535. http://dx.doi.org/10.1002/jcp.24170
[8] Du, W. and Searle, J.S. (2009) The rb pathway and cancer therapeutics. Current Drug Targets, 10, 581-589. http://dx.doi.org/10.2174/138945009788680392
[9] Macaluso, M., Cinti, C., Russo, G., Russo, A. and Giordano, A. (2003) pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene, 22, 3511-3517. http://dx.doi.org/10.1038/sj.onc.1206578
[10] Umemura, S., Shirane, M., Takekoshi, S., Kusakabe, T., Itoh, J., Egashira, N., Tokuda, Y., Mori, K. and Osamura, Y.R. (2009) Overexpression of E2F-5 correlates with a pathological basal phenotype and a worse clinical outcome. British Journal of Cancer, 100, 764-771. http://dx.doi.org/10.1038/sj.bjc.6604900
[11] Mussi, P., Yu, C., O’Malley, B.W. and Xu, J. (2006) Stimulation of steroid receptor coactivator-3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3. Molecular Endocrinology (Baltimore, Md.), 20, 3105-3119. http://dx.doi.org/10.1210/me.2005-0522
[12] Batsché, E., Desroches, J., Bilodeau, S., Gauthier, Y. and Drouin, J. (2005) Rb enhances p160/SRC coactivator-dependent activity of nuclear receptors and hormone responsiveness. The Journal of Biological Chemistry, 280, 19746-19756. http://dx.doi.org/10.1074/jbc.M413428200
[13] Macaluso, M., Montanari, M., Noto, P.B., Gregorio, V., Surmacz, E. and Giordano, A. (2006) Nuclear and cytoplasmic interaction of pRb2/p130 and ER-beta in MCF-7 breast cancer cells. Annals of Oncological Office Journal of European Society for Medical Oncology ESMO, 17, vii27-vii29. http://dx.doi.org/10.1093/annonc/mdl945
[14] Abbondanza, C., Medici, N., Nigro, V., Rossi, V., Gallo, L., Piluso, G., Belsito, A., Roscigno, A., Bontempo, P., Puca, A.A., Molinari, A.M., Moncharmont, B. and Puca, G.A. (2000) The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action. Proceedings of the National Academy of Sciences of the USA, 97, 3130-3135. http://dx.doi.org/10.1073/pnas.97.7.3130
[15] Chua, S.S., Ma, Z., Ngan, E. and Tsai, S.Y. (2004) Cdc25B as a steroid receptor coactivator. Vitamins & Hormones, 68, 231-256. http://dx.doi.org/10.1016/S0083-6729(04)68008-3
[16] Weigel, N.L. and Moore, N.L. (2007) Cyclins, cyclin dependent kinases, and regulation of steroid receptor action. Molecular and Cellular Endocrinology, 265-266, 157-161. http://dx.doi.org/10.1016/j.mce.2006.12.013
[17] Ngwenya, S. and Safe, S. (2003) Cell context-dependent differences in the induction of E2F-1 gene expression by 17β-estradiol in MCF-7 and ZR-75 cells. Endocrinology, 144, 1675-1685. http://dx.doi.org/10.1210/en.2002-0009
[18] Zhou, W., Srinivasan, S., Nawaz, Z. and Slingerland, J.M. (2013) ERα, SKP2 and E2F-1 form a feed forward loop driving late ERα targets and G1 cell cycle progression. Oncogene, in press. http://dx.doi.org/10.1038/onc.2013.197
[19] Stender, J.D., Frasor, J., Komm, B., Chang, K.C.N., Kraus, W.L. and Katzenellenbogen, B.S. (2007) Estrogen-regulated gene networks in human breast cancer cells: Involvement of E2F1 in the regulation of cell proliferation. Molecular Endocrinology (Baltimore, Md.), 21, 2112-2123. http://dx.doi.org/10.1210/me.2006-0474
[20] Bourdeau, V., Deschênes, J., Laperrière, D., Aid, M., White, J.H. and Mader, S. (2008) Mechanisms of primary and secondary estrogen target gene regulation in breast cancer cells. Nucleic Acids Research, 36, 76-93. http://dx.doi.org/10.1093/nar/gkm945
[21] Tu, Z., Prajapati, S., Park, K.-J., Kelly, N.J., Yamamoto, Y. and Gaynor, R.B. (2006) IKK alpha regulates estrogen-induced cell cycle progression by modulating E2F1 expression. The Journal of Biological Chemistry, 281, 6699-6706. http://dx.doi.org/10.1074/jbc.M512439200
[22] Hartman, J., Müller, P., Foster, J.S., Wimalasena, J., Gustafsson, J.-A. and Strom, A. (2004) HES-1 inhibits 17beta-estradiol and heregulin-beta1-mediated upregulation of E2F-1. Oncogene, 23, 8826-8833. http://dx.doi.org/10.1038/sj.onc.1208139
[23] Planas-Silva, M.D. and Weinberg, R.A. (1997) Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Molecular and Cellular Biology, 17, 4059-4069.
[24] Prall, O.W., Sarcevic, B., Musgrove, E.A., Watts, C.K. and Sutherland, R.L. (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. The Journal of Biological Chemistry, 272, 10882-10894. http://dx.doi.org/10.1074/jbc.272.16.10882
[25] Foster, J.S., Henley, D.C., Ahamed, S. and Wimalasena, J. (2001) Estrogens and cell-cycle regulation in breast cancer. Trends in Endocrinology & Metabolism TEM, 12, 320-327. http://dx.doi.org/10.1016/S1043-2760(01)00436-2
[26] Morris, L., Allen, K.E. and La Thangue, N.B. (2000) Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators. Nature Cell Biology, 2, 232-239. http://dx.doi.org/10.1038/35041123
[27] Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A. and Kouzarides, T. (2000) Regulation of E2F1 activity by acetylation. EMBO Journal, 19, 662-671. http://dx.doi.org/10.1093/emboj/19.4.662
[28] Kong, H.J., Yu, H.J., Hong, S., Park, M.J., Choi, Y.H., An, W.G., Lee, J.W. and Cheong, J. (2003) Interaction and functional cooperation of the cancer-amplified transcriptional coactivator activating signal cointegrator-2 and E2F-1 in cell proliferation. Molecular Cancer Research MCR, 1, 948-958.
[29] Louie, M.C., Zou, J.X., Rabinovich, A. and Chen, H.W. (2004) ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Molecular and Cellular Biology, 24, 5157-5171. http://dx.doi.org/10.1128/MCB.24.12.5157-5171.2004
[30] Musgrove, E.A. and Sutherland, R.L. (2009) Biological determinants of endocrine resistance in breast cancer. Nature Reviews Cancer, 9, 631-643.
[31] Jordan, V.C. and O’Malley, B.W. (2007) Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. Journal of Clinical Oncology Office and American Society of Clinical Oncology, 25, 5815-5824. http://dx.doi.org/10.1200/JCO.2007.11.3886
[32] Wilcken, N.R., Sarcevic, B., Musgrove, E.A. and Sutherland, R.L. (1996) Differential effects of retinoids and antiestrogens on cell cycle progression and cell cycle regulatory genes in human breast cancer cells. Cell Growth & Differentiation Journal of Molecular Biology American Association for Cancer Research, 7, 65-74.
[33] Carroll, J.S., Prall, O.W., Musgrove, E.A. and Sutherland, R.L. (2000) A pure estrogen antagonist inhibits cyclin ECdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence. The Journal of Biological Chemistry, 275, 38221-38229. http://dx.doi.org/10.1074/jbc.M004424200
[34] Bosco, E.E., Wang, Y., Xu, H., Zilfou, J.T., Knudsen, K.E., Aronow, B.J., Lowe, S.W. and Knudsen, E.S. (2007) The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. The Journal of Clinical Investigation, 117, 218-228. http://dx.doi.org/10.1172/JCI28803
[35] Thangavel, C., Dean, J.L., Ertel, A., Knudsen, K.E., Aldaz, C.M., Witkiewicz, A.K., Clarke, R. and Knudsen, E.S. (2011) Therapeutically activating RB: Reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocrine-Related Cancer, 18, 333-345. http://dx.doi.org/10.1530/ERC-10-0262
[36] Miller, T.W., Balko, J.M., Fox, E.M., Ghazoui, Z., Dunbier, A., Anderson, H., Dowsett, M., Jiang, A., Smith, R.A., Maira, S.-M., Manning, H.C., González-Angulo, A.M., Mills, G.B., Higham, C., Chanthaphaychith, S., Kuba, M.G., Miller, W.R., Shyr, Y. and Arteaga, C.L. (2011) ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discovery, 1, 338-351. http://dx.doi.org/10.1158/2159-8290.CD-11-0101
[37] Bosco, E.E. and Knudsen, E.S. (2007) RB in breast cancer: The crossroads of tumorigenesis and treatment. Cell Cycle, 6, 667-671. http://dx.doi.org/10.4161/cc.6.6.3988
[38] Cavailles, V., Dauvois, S., Danielian, P.S. and Parker, M.G. (1994) Interaction of proteins with transcriptionally active estrogen receptors. Proceedings of the National Academy of Sciences of the United States of America, 91, 10009-10013. http://dx.doi.org/10.1073/pnas.91.21.10009
[39] Cavailles, V., Dauvois, S., L’Horset, F., Lopez, G., Hoare, S., Kushner, P.J. and Parker, M.G. (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO Journal, 14, 3741-3751.
[40] Castet, A., Boulahtouf, A., Versini, G., Bonnet, S., Augereau, P., Vignon, F., Khochbin, S., Jalaguier, S. and Cavailles, V. (2004) Multiple domains of the receptor-interacting protein 140 contribute to transcription inhibittion. Nucleic Acids Research, 32, 1957-1966. http://dx.doi.org/10.1093/nar/gkh524
[41] Christian, M., Tullet, J.M. and Parker, M.G. (2004) Characterization of four autonomous repression domains in the corepressor receptor interacting protein 140. The Journal of Biological Chemistry, 279, 15645-15651. http://dx.doi.org/10.1074/jbc.M313906200
[42] Wei, L.N., Hu, X., Chandra, D., Seto, E. and Farooqui, M. (2000) Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. The Journal of Biological Chemistry, 275, 40782-40787. http://dx.doi.org/10.1074/jbc.M004821200
[43] Vo, N., Fjeld, C. and Goodman, R.H. (2001) Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CtBP. Molecular and Cellular Biology, 21, 6181-6188. http://dx.doi.org/10.1128/MCB.21.18.6181-6188.2001
[44] Rytinki, M.M. and Palvimo, J.J. (2008) SUMOylation modulates the transcription repressor function of RIP140. The Journal of Biological Chemistry, 283, 11586-11595. http://dx.doi.org/10.1074/jbc.M709359200
[45] Ho, P.-C., Lin, Y.-W., Tsui, Y.-C., Gupta, P. and Wei, L.-N. (2009) A negative regulatory pathway of GLUT4 trafficking in adipocyte: New function of RIP140 in the cytoplasm via AS160. Cell Metabolism, 10, 516-523. http://dx.doi.org/10.1016/j.cmet.2009.09.012
[46] Ho, P.-C., Chuang, Y.-S., Hung, C.-H. and Wei, L.-N. (2011) Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. Cellular Signalling, 23, 1396-1403. http://dx.doi.org/10.1016/j.cellsig.2011.03.023
[47] Kumar, M.B., Tarpey, R.W. and Perdew, G.H. (1999) Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. The Journal of Biological Chemistry, 274, 22155-22164. http://dx.doi.org/10.1074/jbc.274.32.22155
[48] Zschiedrich, I., Hardeland, U., Krones-Herzig, A., Berriel, D.M., Vegiopoulos, A., Müggenburg, J., Sombroek, D., Hofmann, T.G., Zawatzky, R., Yu, X., Gretz, N., Christian, M., White, R., Parker, M.G. and Herzig, S. (2008) Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression. Blood, 112, 264-276. http://dx.doi.org/10.1182/blood-2007-11-121699
[49] Nautiyal, J., Christian, M. and Parker, M.G. (2013) Distinct functions for RIP140 in development, inflammation, and metabolism. Trends in Endocrinology & Metabolism, in press. http://dx.doi.org/10.1016/j.tem.2013.05.001
[50] Ho, P.-C. and Wei, L.-N. (2012) Biological activities of receptor-interacting protein 140 in adipocytes and metabolic diseases. Current Diabetes Reviews, 8, 452-457. http://dx.doi.org/10.2174/157339912803529922
[51] Heery, D.M., Kalkhoven, E., Hoare, S. and Parker, M.G. (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387, 733-736.
[52] Laganière, J., Deblois, G. and Giguère, V. (2005) Functional genomics identifies a mechanism for estrogen activation of the retinoic acid receptor alpha1 gene in breast cancer cells. Molecular Endocrinology, 19, 1584-1592. http://dx.doi.org/10.1210/me.2005-0040
[53] Madak-Erdogan, Z., Charn, T.-H., Jiang, Y., Liu, E.T., Katzenellenbogen, J.A. and Katzenellenbogen, B.S. (2013) Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators. Molecular Systems Biology, 9, Article ID: 676. http://dx.doi.org/10.1038/msb.2013.28
[54] Warnmark, A., Almlof, T., Leers, J., Gustafsson, J.A. and Treuter, E. (2001) Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERalpha and ERbeta. The Journal of Biological Chemistry, 276, 23397-23404. http://dx.doi.org/10.1074/jbc.M011651200
[55] Kouzu-Fujita, M., Mezaki, Y., Sawatsubashi, S., Matsumoto, T., Yamaoka, I., Yano, T., Taketani, Y., Kitagawa, H. and Kato, S. (2009) Coactivation of estrogen receptor beta by gonadotropin-induced cofactor GIOT-4. Molecular and Cellular Biology, 29, 83-92. http://dx.doi.org/10.1128/MCB.00884-08
[56] Garcia-Pedrero, J.M., Del Rio, B., Martinez-Campa, C., Muramatsu, M., Lazo, P.S. and Ramos, S. (2002) Calmodulin is a selective modulator of estrogen receptors. Molecular Endocrinology, 16, 947-960. http://dx.doi.org/10.1210/me.16.5.947
[57] García-Pedrero, J.M., Kiskinis, E., Parker, M.G. and Belandia, B. (2006) The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells. The Journal of Biological Chemistry, 281, 22656-22664. http://dx.doi.org/10.1074/jbc.M602561200
[58] Nassa, G., Tarallo, R., Guzzi, P.H., Ferraro, L., Cirillo, F., Ravo, M., Nola, E., Baumann, M., Nyman, T.A., Cannataro, M., Ambrosino, C. and Weisz, A. (2011) Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells. Molecular BioSystems, 7, 667-676. http://dx.doi.org/10.1039/c0mb00145g
[59] Docquier, A., Garcia, A., Savatier, J., Boulahtouf, A., Bonnet, S., Bellet, V., Busson, M., Jalaguier, S., Margeat, E., Royer, C., Balaguer, P. and Cavailles, V. (2013) Negative regulation of estrogen signaling by ERbeta and RIP140 in ovarian cancer cells. Molecular Endocrinology, 27, 1429-1441.
[60] Porter, W., Saville, B., Hoivik, D. and Safe, S. (1997) Functional synergy between the transcription factor Sp1 and the estrogen receptor. Molecular Endocrinology, 11, 1569-1580. http://dx.doi.org/10.1210/me.11.11.1569
[61] Safe, S. (2001) Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitamins & Hormones, 62, 231-252.
[62] Teyssier, C., Belguise, K., Galtier, F., Cavailles, V. and Chalbos, D. (2003) Receptor-interacting protein 140 binds c-jun and inhibits estradiol-induced activator protein-1 activity by reversing glucocorticoid receptor-interacting protein 1 effect. Molecular Endocrinology, 17, 287-299. http://dx.doi.org/10.1210/me.2002-0324
[63] Suzuki, A., Sanda, N., Miyawaki, Y., Fujimori, Y., Yamada, T., Takagi, A., Murate, T., Saito, H. and Kojima, T. (2010) Down-regulation of PROS1 gene expression by 17beta-estradiol via estrogen receptor alpha (ERalpha)-Sp1 interaction recruiting receptor-interacting protein 140 and the corepressor-HDAC3 complex. The Journal of Biological Chemistry, 285, 13444-13453. http://dx.doi.org/10.1074/jbc.M109.062430
[64] Ohtake, F., Fujii-Kuriyama, Y. and Kato, S. (2009) AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochemical Pharmacology, 77, 474-484. http://dx.doi.org/10.1016/j.bcp.2008.08.034
[65] Reen, R.K., Cadwallader, A. and Perdew, G.H. (2002) The subdomains of the transactivation domain of the aryl hydrocarbon receptor (AhR) inhibit AhR and estrogen receptor transcriptional activity. Archives of Biochemistry and Biophysics, 408, 93-102. http://dx.doi.org/10.1016/S0003-9861(02)00518-0
[66] Madak-Erdogan, Z. and Katzenellenbogen, B.S. (2012) Aryl hydrocarbon receptor modulation of estrogen recaptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicological Sciences, 125, 401-411. http://dx.doi.org/10.1093/toxsci/kfr300
[67] Docquier, A., Harmand, P.-O., Fritsch, S., Chanrion, M., Darbon, J.-M. and Cavaillès, V. (2010) The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes. Clinical Cancer Research, 16, 2959-2970. http://dx.doi.org/10.1158/1078-0432.CCR-09-3153
[68] Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A., Reynolds, E., Dressler, L., Nobel, A., Parker, J., Ewend, M.G., Sawyer, L.R., Wu, J., Liu, Y., Nanda, R., Tretiakova, M., Ruiz Orrico, A., Dreher, D., Palazzo, J.P., Perreard, L., Nelson, E., Mone, M., Hansen, H., Mullins, M., Quackenbush, J.F., Ellis, M.J., Olopade, O.I., Bernard, P.S. and Perou, C.M. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 7, 96. http://dx.doi.org/10.1186/1471-2164-7-96
[69] Katsanis, N., Ives, J.H., Groet, J., Nizetic, D. and Fisher, E.M. (1998) Localisation of receptor interacting protein 140 (RIP140) within 100 kb of D21S13 on 21q11, a gene-poor region of the human genome. Human Genetics, 102, 221-223. http://dx.doi.org/10.1007/s004390050682
[70] Augereau, P., Badia, E., Fuentes, M., Rabenoelina, F., Corniou, M., Derocq, D., Balaguer, P. and Cavailles, V. (2006) Transcriptional regulation of the human NRIP1/ RIP140 gene by estrogen is modulated by dioxin signalling. Molecular Pharmacology, 69, 1338-1346. http://dx.doi.org/10.1124/mol.105.017376
[71] Lee, C.H., Chinpaisal, C. and Wei, L.N. (1998) Cloning and characterization of mouse RIP140, a corepressor for nuclear orphan receptor TR2. Molecular and Cellular Biology, 18, 6745-6755.
[72] Christian, M., White, R. and Parker, M.G. (2006) Metabolic regulation by the nuclear receptor corepressor RIP140. Trends in Endocrinology & Metabolism, 17, 243-250. http://dx.doi.org/10.1016/j.tem.2006.06.008
[73] Jagannathan, V. and Robinson-Rechavi, M. (2011) Metaanalysis of estrogen response in MCF-7 distinguishes early target genes involved in signaling and cell proliferation from later target genes involved in cell cycle and DNA repair. BMC Systems Biology, 5, 138. http://dx.doi.org/10.1186/1752-0509-5-138
[74] Thenot, S., Charpin, M., Bonnet, S. and Cavailles, V. (1999) Estrogen receptor cofactors expression in breast and endometrial human cancer cells. Molecular and Cellular Endocrinology, 156, 85-93. http://dx.doi.org/10.1016/S0303-7207(99)00139-2
[75] Lin, C.-Y., Strom, A., Vega, V.B., Kong, S.L., Yeo, A.L., Thomsen, J.S., Chan, W.C., Doray, B., Bangarusamy, D.K., Ramasamy, A., Vergara, L.A., Tang, S., Chong, A., Bajic, V.B., Miller, L.D., Gustafsson, J.-A. and Liu, E.T. (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biology, 5, R66. http://dx.doi.org/10.1186/gb-2004-5-9-r66
[76] Carroll, J.S., Liu, X.S., Brodsky, A.S., Li, W., Meyer, C.A., Szary, A.J., Eeckhoute, J., Shao, W., Hestermann, E.V., Geistlinger, T.R., Fox, E.A., Silver, P.A. and Brown, M. (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122, 33-43. http://dx.doi.org/10.1016/j.cell.2005.05.008
[77] Escande, A., Pillon, A., Servant, N., Cravedi, J.-P., Larrea, F., Muhn, P., Nicolas, J.-C., Cavaillès, V. and Balaguer, P. (2006) Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochemical Pharmacology, 71, 1459-1469. http://dx.doi.org/10.1016/j.bcp.2006.02.002
[78] Monroe, D.G., Getz, B.J., Johnsen, S.A., Riggs, B.L., Khosla, S. and Spelsberg, T.C. (2003) Estrogen receptor isoform-specific regulation of endogenous gene expression in human osteoblastic cell lines expressing either ERalpha or ERbeta. Journal of Cellular Biochemistry, 90, 315-326. http://dx.doi.org/10.1002/jcb.10633
[79] Stossi, F., Barnett, D.H., Frasor, J., Komm, B., Lyttle, C.R. and Katzenellenbogen, B.S. (2004) Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) alpha or ERbeta in human osteosarcoma cells: Distinct and common target genes for these receptors. Endocrinology, 145, 3473-3486. http://dx.doi.org/10.1210/en.2003-1682
[80] Docquier, A., Augereau, P., Lapierre, M., Harmand, P.-O., Badia, E., Annicotte, J.-S., Fajas, L. and Cavaillès, V. (2012) The RIP140 gene is a transcriptional target of E2F1. PloS One, 7, e35839. http://dx.doi.org/10.1371/journal.pone.0035839
[81] Bagamasbad, P. and Denver, R.J. (2011) Mechanisms and significance of nuclear receptor auto-and cross-regulation. General and Comparative Endocrinology, 170, 3-17. http://dx.doi.org/10.1016/j.ygcen.2010.03.013
[82] Safe, S., Wang, F., Porter, W., Duan, R. and McDougal, A. (1998) Ah receptor agonists as endocrine disruptors: Antiestrogenic activity and mechanisms. Toxicology Letters, 102-103, 343-347. http://dx.doi.org/10.1016/S0378-4274(98)00331-2
[83] Swedenborg, E. and Pongratz, I. (2010) AhR and ARNT modulate ER signaling. Toxicology, 268, 132-138. http://dx.doi.org/10.1016/j.tox.2009.09.007
[84] Kerley, J.S., Olsen, S.L., Freemantle, S.J. and Spinella, M.J. (2001) Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: A potential negative-feedback regulatory mechanism. Biochemical and Biophysical Research Communications, 285, 969-975. http://dx.doi.org/10.1006/bbrc.2001.5274
[85] White, K.A., Yore, M.M., Deng, D. and Spinella, M.J. (2005) Limiting effects of RIP140 in estrogen signaling: potential mediation of anti-estrogenic effects of retinoic acid. The Journal of Biological Chemistry, 280, 7829-7835. http://dx.doi.org/10.1074/jbc.M412707200
[86] Lin, R. (2002) Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Molecular Endocrinology, 16, 1243-1256. http://dx.doi.org/10.1210/me.16.6.1243
[87] Graham, J.D., Yager, M.L., Hill, H.D., Byth, K., O’Neill, G.M. and Clarke, C.L. (2005) Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Molecular Endocrinology, 19, 2713-2735. http://dx.doi.org/10.1210/me.2005-0126
[88] Carascossa, S., Gobinet, J., Georget, V., Lucas, A., Badia, E., Castet, A., White, R., Nicolas, J.-C., Cavaillès, V. and Jalaguier, S. (2006) Receptor-interacting protein 140 is a repressor of the androgen receptor activity. Molecular Endocrinology, 20, 1506-1518. http://dx.doi.org/10.1210/me.2005-0286
[89] Nichol, D., Christian, M., Steel, J.H., White, R. and Parker, M.G. (2006) RIP140 expression is stimulated by estrogen-related receptor alpha during adipogenesis. The Journal of Biological Chemistry, 281, 32140-32147. http://dx.doi.org/10.1074/jbc.M604803200
[90] Loh, Y.N., Hedditch, E.L., Baker, L.A., Jary, E., Ward, R.L. and Ford, C.E. (2013) The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer, 13, 174. http://dx.doi.org/10.1186/1471-2407-13-174
[91] Berger, C., Qian, Y. and Chen, X. (2013) The p53-estrogen receptor loop in cancer. Current Molecular Medicine, in press.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.