Determination of Lanthanides, Thorium, Uranium and Plutonium in Irradiated (Th, Pu)O2 by Liquid Chromatography Using α-Hydroxyiso Butyric Acid (α-HIBA)

Abstract

An HPLC method is presented for the separation and determination of lanthanides (Lns), thorium (Th), uranium (U) and plutonium (Pu) from irradiated (Th, Pu)O2. Individual separation of Lns, Th, U and Pu is a challenging task becauseof 1) lanthanideshavingsimilar physical and chemical properties, 2) presence of complex matrix like irradiated fuel and 3) the co-existence of multiple oxidation states of Pu. Different procedures were developed for separation of individual lanthanides and actinides.The individual lanthanides were separated on a dynamically modified reversed phase (RP) column using n-octane sulfonic acid as an ion interaction reagentand employingdual gradient(pH and concentration) of α-hydroxyisobutyric acid (HIBA). In order to improve the precision on the determination of Lns, terbium (Tb) was used as an internal standard. The method was validated employing simulated high level liquid waste. Concentrations of lanthanides viz. lanthanum (La) and neodymium (Nd) in the dissolver solution were determined based on their peak areas. Th, U and Pu were separated on a RP column using mobile phase containing HIBA and methanol. Since Pu is prone to exist in multiple oxidation states, all the oxidation states were converted into Pu (IV) using H2O2 in 3M HNO3. Under the optimized conditions, Pu(IV) eluted first followed by Th and U. The concentrations of Th, U and Pu were determined by standard addition method andwere found to be 1.10 ± 0.02 mg/g, 5.3 ± 0.3 μg/g and 27 ± 1 μg/g, respectively, in the dissolver solution of irradiated fuel. These values were in good agreement with the concentration of Th determined by biamperometry and those of U and Puby isotope dilution thermal ionization mass spectrometry.

Share and Cite:

Kumar, P. , G. Jaison, P. , M. Telmore, V. , Paul, S. and K. Aggarwal, S. (2013) Determination of Lanthanides, Thorium, Uranium and Plutonium in Irradiated (Th, Pu)O2 by Liquid Chromatography Using α-Hydroxyiso Butyric Acid (α-HIBA). International Journal of Analytical Mass Spectrometry and Chromatography, 1, 72-80. doi: 10.4236/ijamsc.2013.11009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. M. Ganatayet, B. N. Jagatap, K. G. Manohar and K. C. Sahoo, “New Technologies for Thorium Fuel Cycle,” Proceeding of the INSAC-2000, Mumbai, 1-2 June 2000, p. 123.
[2] K. Anantharaman, V. Shivakumar and D. Saha, “Utilisation of Thoriumin Reactors,” Journal of Nuclear Materials, Vol. 383, No. 1-2, 2008, pp. 119-121. http://dx.doi.org/10.1016/j.jnucmat.2008.08.042
[3] R. K. Sinha and A. Kakodkar, “Design and Development of the AHWR—The Indian Thoriumfuelled Innovative Nuclear Reactor,” Nuclear Engineering and Design, Vol. 236, No. 7-8, 2006, pp. 683-700. http://dx.doi.org/10.1016/j.nucengdes.2005.09.026
[4] S. K. Aggarwal, P. G. Jaison, V. M. Telmore, P. S. Khodade, R. V. Shah, R. Govindan, V. L. Sant and P. M. Shah, “Determination of Burn-Up of Irradiated PHWR Fuel Samples from KAPS-1 by Mass Spectrometry,” BARC Report No. BARC/2007/E/020, 2007.
[5] B. Saha, R. Bagyalakshmi, G. Periaswami, V. D. Kavimandan, S. A. Chitambar, H. C. Jain and C. K. Mathews, “Determination of Nuclear Fuel Burn-Up Using Mass Spectrometric Techniques,” BARC Report-891, 1977.
[6] M. Gysemans, A. Dobney, L. Adriaensen and L. Sannen, “Destructive Radiochemical Burn-Up Determination at SCK-CEN Using Isotopes of Cs, Ce and Nd as Fission Product Monitors,” 2006. http://www.sckcen.be/HOTLAB/events/proceedings/2006/HOTLAB%202006/Full%20Papers/13%20Gysemans.pdf
[7] S. Koyama, M. Osaka, T. Sekine, K. Morozumi, T. Namekawa and M. Itoh, “Measurement of Burnup in FBR MOX Fuel Irradiated to High Burn Up,” Journal of Nuclear Science and Technology, Vol. 40, 2003, pp. 998- 1013. http://dx.doi.org/10.3327/jnst.40.998
[8] K. L. Ramakumar, S. K. Aggarwal, V. D. Kavimandan, V. A. Raman, P. S. Khodade and H. C. Jain, “Separation and Purification of Magnesium, Lead, and Neodymium from Dissolver Solution of Irradiated Fuel,” Separation Science and Technology, Vol. 15, No. 7, 1980, pp. 1471- 1481. http://dx.doi.org/10.1080/01496398008056098
[9] I. Burcik and V. Mikulaj, “Separation of Thorium, Uranium and Plutonium by Neutral and Basic Organic Extractants,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 150, No. 2, 1991, pp. 247-253. http://dx.doi.org/10.1007/BF02035309
[10] N. Dacheux and J. Aupias, “Determination of Uranium, Thorium, Plutonium, Americium and Curium Ultratraces by Photon Electron Rejecting α-Liquid Scintillation,” Analytical Chemistry, Vol. 69, No. 13, 1997, pp. 2275- 2282. http://dx.doi.org/10.1021/ac961209r
[11] P. G. Jaison, V. M. Telmore, P. Kumar and K. Aggarwal, “Reversed-Phase Liquid Chromatography Using Mandelic Acid as an Eluent for the Determination of Uranium in Presence of Large Amounts of Thorium,” Journal of Chromatography A, Vol. 1216, No. 9, 2009, pp. 1383- 1389. http://dx.doi.org/10.1016/j.chroma.2008.12.076
[12] N. R. Larsen, “High-Pressure Liquid Chromatography of Irradiated Nuclear Fuel: Separation of Neodymium for Burn-Up Determination,” Journal of Radioanalytical Chemistry, Vol. 52, No. 1, 1979, pp. 85-91. http://dx.doi.org/10.1007/BF02517702
[13] P. E. Jackson, J. Carnevale, H. Fuping and P. R. Haddad, “Determination of Thorium and Uranium in Mineral Sands by Ion Chromatography,” Journal of Chromatography A, Vol. 671, No. 1-2, 1994, pp. 181-191. http://dx.doi.org/10.1016/0021-9673(94)80237-8
[14] S. Rollin, Z. Kopajtic, B. Wernli and B. Magyar, “Determination of Lanthanides and Actinides in Uranium Materials by High-Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometric Detection,” Journal of Chromatography A, Vol. 739, No. 1-2, 1996, pp. 139-149. http://dx.doi.org/10.1016/0021-9673(96)00037-4
[15] M. R. Buchmeiser, G. Seeber and R. Tessadri, “Quantification of Lanthanides in Rocks Using Succinic Acid-De-rivatized Sorbents for On-Line SPE-RP-Ion-Pair HPLC,” Analytical Chemistry, Vol. 72, No. 11, 2000, pp. 2595- 2602. http://dx.doi.org/10.1021/ac991217i
[16] G. Seeber, P. Brunner, M. R. Buchmeiser and G. K. Bonn, “Poly(7-oxanorborn-2-ene-5,6-dicarboxylate)-Coated Silica Prepared by Ring-Opening Metathesis Polymerization for the Selective Enrichment of Radioactive Lanthanides,” Journal of Chromatography A, Vol. 848, No. 1-2, 1999, pp. 193-202. http://dx.doi.org/10.1016/S0021-9673(99)00399-4
[17] R. M. Cassidy, S. Elchuk, N. L. Elliot, L. W. Green, C. H. Knight and B. M. Recoskie, “Dynamic Ion Exchange Chromatography for the Determination of Number of Fissions in Uranium Dioxide Fuels,” Analytical Chemistry, Vol. 58, No. 6, 1986, pp. 1181-1186. http://dx.doi.org/10.1021/ac00297a045
[18] C. H. Knight, R. M. Cassidy, B. M. Recoskie and L. W. Green, “Dynamic Ion Exchange Chromatography for De- termination of Number of Fissions in Thorium-Uranium Dioxide Fuels,” Analytical Chemistry, Vol. 56, No. 3, 1984, pp. 474-478. http://dx.doi.org/10.1021/ac00267a041
[19] N. Sivaraman, R. Kumar, S. Subramaniam and P. R. Vasudeva Rao, “Separation of Lanthanides Using Ion-Inter- action Chromatography with HDEHP Coated Columns,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 252, No. 3, 2002, pp. 491-495. http://dx.doi.org/10.1023/A:1015894418606
[20] N. Sivaraman, S. Subramaniam, T. G. Srinivasan and P. R. Vasudeva Rao, “Burn-Up Measurements on Nuclear Reactor Fuels Using High Performance Liquid Chromatography,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 253, No. 1, 2002, pp. 35-40. http://dx.doi.org/10.1023/A:1015800114488
[21] A. Datta, N. Sivaraman, K. S. Viswanathan, S. Ghosh, T. G. Srinivasan and P. R. Vasudeva Rao, “Correlation of Retention of Lanthanide and Actinide Complexes with Stability Constants and Their Speciation,” Radiochimica Acta, Vol. 101, No. 2, 2013, pp. 81-92. http://dx.doi.org/10.1524/ract.2013.2005
[22] H. Fuping, P. R. Haddad, P. E. Jackson and J. Carnevale, “Studies on the Retention Behaviour of α-Hydroxyisobutyric Acid Complexes of Thorium(IV) and Uranyl Ion in Reversed-Phase High-Performance Liquid Chromatography,” Journal of Chromatography A, Vol. 640, No. 1-2, 1993, pp. 187-194. http://dx.doi.org/10.1016/0021-9673(93)80181-7
[23] H. Fuping, B. Paull and P. R. Haddad, “Retention Beha- viour of Thorium(IV) and Uranyl on a Reversed-Phase Column with Glycolate and Mandelate as Eluents,” Jour- nal of Chromatography A, Vol. 739, No. 1-2, 1996, pp. 151-161. http://dx.doi.org/10.1016/0021-9673(96)81462-2
[24] S. Elchuk, K. I. Burns, R. M. Cassidy and C. A. Lucy, “Reversed-Phase Separation of Transition Metals, Lanthanides and Actinides by Elution with Mandelic Acid,” Journal of Chromatography A, Vol. 558, No. 1, 1991, pp. 197-207. http://dx.doi.org/10.1016/0021-9673(91)80125-Z
[25] P. G. Jaison, N. M. Raut and S. K. Aggarwal, “Direct Determination of Lanthanides in Simulated Irradiated Thoria Fuels Using Reversed-Phase High-Performance Liquid Chromatography,” Journal of Chromatography A, Vol. 1122, No. 1-2, 2006, pp. 47-53. http://dx.doi.org/10.1016/j.chroma.2006.04.037
[26] A. Datta, N. Sivaraman, T. G. Srinivasan and P. R. Vasudeva Rao, “Liquid Chromatographic Behaviour of Actinides and Lanthanides on Monolith Supports,” Radiochimica Acta, Vol. 99, 2011, pp. 275-283. http://dx.doi.org/10.1524/ract.2011.1816
[27] P. R. Nair, V. Akhileswaran, P. Venkataramana, M. Xavier, S. Vaidyanathan and P. R. Natarajan, BARC Report, BARC/I-882, 1986.
[28] N. M. Raut, P. G. Jaison and S. K. Aggarwal, “Separation and Determination of Lanthanides, Thorium and Uranium Using a Dual Gradient in Reversed-Phase Liquid Chromatography,” Journal of Chromatography A, Vol. 1052, No. 1-2, 2004, pp. 131-136. http://dx.doi.org/10.1016/j.chroma.2004.08.054
[29] Ch. Siva KesavaRaju, M. S. Subramanian, N. Sivaraman, T. G. Srinivasan and P. R. Vasudeva Rao, “Retention Studies on Uranium, Thorium and Lanthanides with Amide Modified Reverse Phase Support and Its Applications,” Journal of Chromatography A, Vol. 1156, No. 1-2, 2007, pp. 340-347. http://dx.doi.org/10.1016/j.chroma.2007.01.010
[30] K. Jayachandran, J. S. Gamare, P. R. Nair, M. Xavier and S. K. Aggarwal, “A Novel Biamperometric Methodology for Thorium Determination by EDTA Complexometric Titration,” Radiochimica Acta, Vol. 100, 2012, pp. 311- 314. http://dx.doi.org/10.1524/ract.2012.1920

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.