Share This Article:

Bi-Directional Giant Magneto Impedance Sensor

Abstract Full-Text HTML Download Download as PDF (Size:1562KB) PP. 249-254
DOI: 10.4236/ampc.2013.35036    3,619 Downloads   6,345 Views   Citations

ABSTRACT

A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy were char-acterized as a function of plateup parameters, and process conditions were established to deposit a Ni-Fe thin film with a high permeability (~1000) and a low coercivity (0.6 Oersted). Conventional GMI sensors are uni-directional and are several millimeters long. In this work, a spiral-shaped sensor using electroplated Ni-Fe permalloy to detect bi-directional magnetic field is reported. Excellent bi-directional magnetic field sensing has been demonstrated using the 1 mm2 compact double-spiral structure.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Uppili and B. Daglen, "Bi-Directional Giant Magneto Impedance Sensor," Advances in Materials Physics and Chemistry, Vol. 3 No. 5, 2013, pp. 249-254. doi: 10.4236/ampc.2013.35036.

References

[1] L. V. Panina and K. Mohri, “Magneto-Impedance Effect in Amorphous Wires,” Applied Physics Letters, Vol. 65, No. 9, 1994, pp. 1189-1191. doi:10.1063/1.112104
[2] K. Mohri, “Magneto-Impedance Sensor,” Nagoya University, Nagoya.
[3] D. C. Jiles, “Recent Advances and Future Directions in Magnetic Materials,” Acta Materialia, Vol. 51, No. 19, 2003, pp. 5907-5939. doi:10.1016/j.actamat.2003.08.011
[4] N. Laurita, A. Chaturvedi, C. Bauer, P. Jayathilaka, A. Leary, C. Miller, M.-H. Phan, M. E. McHenry and H. Srikanth, “Enhanced Giant Magnetoimpedance Effect and Field Sensitivity in Co-Coated Soft Ferromagnetic Amorphous Ribbons,” Journal of Applied Physics, Vol. 109, No. 7, 2011, Article ID: 07C706.
[5] V. Zhukova, M. Ipatov and A. Zhukov, “Thin Magnetically Soft Wires for Magnetic Microsensors,” Sensors, Vol. 9, No. 11, 2009, pp. 9216-9240. doi:10.3390/s91109216
[6] A. F. Cobeno, A. Zhukov, J. M. Blanco and J. Gonzalez, “Giant Magnetoimpedance Effect in CoMnSiB Amorphous Microwires,” Journal of Magnetism and Magnetic Materials, Vol. 234, No. 3, 2001, pp. 359-365. doi:10.1016/S0304-8853(01)00385-7
[7] T. A. óvári, S. Corodeanu and H. Chiriac, “Domain Wall Velocity in Submicron Amorphous Wires,” Journal of Applied Physics, Vol. 109, No. 7, 2011, Article ID: 07D502.
[8] Y. Honkura, “Development of Amorphous Wire Type MI Sensors for Automobile Use,” Journal of Magnetism and Magnetic Materials, Vol. 249, No. 1-2, 2002, pp. 375-381. doi:10.1016/S0304-8853(02)00561-9
[9] R. Beach and A. Berkowitz, “Giant Magnetic Field Dependent Impedance of Amorphous FeCoSiB Wire,” Applied Physics Letters, Vol. 64, No. 26, 1994, pp. 3652-3654. doi:10.1063/1.111170
[10] H. García-Miquel and V. M. García-Chocano, “Magnetic Field Sensor Based on Giant Magnetoimpedance,” International Conference on Sensor Technologies and Applications, 2007, pp. 24-29.
[11] A. Zhukov, M. Ipatov, J. M. Blanco3 and V. Zhukova, “GMI Effect of Ultra-Soft Magnetic Soft Amorphous Microwires,” The Open Materials Science Journal, Vol. 6, 2012, pp. 39-43. doi:10.2174/1874088X01206010039
[12] D. de Cos, J. M. Barandiarán, A. García-Arribas, V. O. Vas’kovskiy and G. V. Kurlyandskaya, “Longitudinal and Transverse Magnetoimpedance in FeNi/Cu/FeNi Multilayers With Longitudinal and Transverse Anisotropy,” IEEE Transactions on Magnetics, Vol. 44, No. 11, 2008, pp. 3863-3867. doi:10.1109/TMAG.2008.2001335
[13] E. Fernandez, A. Garcia-Arribas, S. O. Volchkov, J. M. Barandiaran and G. V. Kurlyandskaya, “Differences in the Magneto-Impedance of Fe-Ni/Cu/Fe-Ni Multilayers with Open and Closed Magnetic Path,” IEEE Transactions on Magnetics, Vol. 46, No. 2, 2010, pp. 658-662. doi:10.1109/TMAG.2009.2033020
[14] S. O. Volchkov, E. Fernández, A. García-Arribas, J. M. Barandiaran, V. N. Lepalovskij and G. V. Kurlyandskaya, “Magnetic Properties and Giant Magnetoimpedance of FeNi-Based Nanostructured Multilayers With Variable Thickness of the Central Cu Lead,” IEEE Transactions on Magnetics, Vol. 47, No. 10, 2011, pp. 3328-3331. doi:10.1109/TMAG.2011.2157896
[15] H. Lee, W. Bang, K. Hong, D. Kim, J. Na and W. Y. Jeung, “Magnetoimpedance of Galvanostatically Electroplated Ni-Fe Permalloy Wires,” IEEE Transactions on Magnetics, Vol. 45, No. 6, 2009, pp. 133-137.
[16] M. Glickman, T. Niblock, J. Harrison, I. B. Goldberg, P. Tseng and J. W. Judy, “High Permeability Permalloy for Mems,” University of California, Los Angeles.
[17] Y. Jianxiong, “Giant Magnetoimpedance Sensor with Tortuous Shape Fabricated by MEMS Technology,” The Third International Conference on Measuring Technology and Mechatronics Automation, 2011, pp. 293-296
[18] M. Phan and H. Peng, “Giant Magnetoimpedance Materials: Fundamentals and Applications,” Progress in Materials Science, Vol. 53, No. 2, 2008, pp. 323-420. doi:10.1016/j.pmatsci.2007.05.003
[19] M. Morikawa, “Giant Magnetoimpedance Effect in Layered Thin Films,” IEEE Transactions on Magnetics, Vol. 33, No. 5, 1997, pp. 367-372. doi:10.1109/20.620448
[20] L. V. Panina, K. Mohri., K. Bushida and M. Noda, “Giant Magnetoimpedance and Magneto-Inductive Effects in Amorphous Alloys”, Journal of Applied Physics, Vol. 76, No. 10, 2009, pp. 6198-6203. doi:10.1063/1.358310
[21] N. Nishibe and O. Norikazu, “Thin Film Magnetic Field Sensor Utilizing Magneto Impedance Effects,” R&D Review of Toyota CRDL, Vol. 35, No. 4, 2000, pp. 15-20.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.