Share This Article:

Perturbing Potential and Orbit Dynamics

Abstract Full-Text HTML XML Download Download as PDF (Size:623KB) PP. 207-212
DOI: 10.4236/jmp.2013.48A020    4,475 Downloads   5,881 Views   Citations
Author(s)    Leave a comment


This article checks a perturbing gravitational potential, with some orbit dynamics parameters: the angular precession at each single point of any elliptic orbit, the increase of the eccentricity of the Moon and the secular increase of the Astronomical Unit. This potential is consistent with the solution of the precession of Mercury, event which was the first success of General Relativity, and now is near to reach its first centenary. We suggest in this paper to update the classic test of G.R., studying the gradual progression of precession, not only in its perihelion but testing a complete trajectory around the Sun.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Bootello, "Perturbing Potential and Orbit Dynamics," Journal of Modern Physics, Vol. 4 No. 8A, 2013, pp. 207-212. doi: 10.4236/jmp.2013.48A020.


[1] W. Flanders and G. Japaridze, International Journal Theoretical Physics, Vol. 41, 2002, pp. 541-550. doi:10.1023/A:1014257523781
[2] L. Landau and M. Lifshitz, “Mekhanika,” 3rd Edition, Butterwoth-Heinemann, Oxford, 1976.
[3] V. Melnikov and N. Kolosnitsyn, Gravitation & Cosmology, Vol. 10, 2004, pp. 137-140.
[4] G. Adkins and J. McDonnell, Physical Review D, Vol. 75, 2007, Article ID: 082001. doi:10.1103/PhysRevD.75.082001
[5] C. Misner, K. Thorne and J. Wheeler, Physics Today, Vol. 27, 1973, p. 47. doi:10.1063/1.3128805
[6] A. Einstein, “The Collected Papers of A. Einstein,” Princeton University Press, Princeton, 1996.
[7] M. Berry, “Principles of Cosmology and Gravitation,” Cambridge University Press, Cambridge, 1990.
[8] B. Marion and S. Thornton, “Classical Dynamics of Particles and Systems,” Thomson-Brooks, Belmont, 2004.
[9] J. Bootello, International Journal Astronomy & Astrophysics, Vol. 2, pp. 249-255. doi:10.4236/ijaa.2012.24032
[10] J. Anderson and M. Nieto, “Astrometric Solar-System Anomalies,” Proceedings of the International Astronomical Union, Vol. 5, 2010, pp. 189-197. doi:10.1017/S1743921309990378
[11] J. Williams and D. Boggs, “Lunar Core and Mantle. What Does LLR See?” Proceedings of the 16th International Workshop on Laser Ranging, Poznan, 13-17 October 2008, pp. 101-120.
[12] L. Iorio, Royal Astronomical Society, Vol. 415, 2011, pp. 1266-1275. doi:10.1111/j.1365-2966.2011.18777.x
[13] G. Krasinsky and V. Brumberg, Celestial Mechanics and Dynamical Astronomy, Vol. 90, 2004, pp. 267-288. doi:10.1007/s10569-004-0633-z
[14] J. Burns, American Journal of Physics, Vol. 44, 1976, p. 944. doi:10.1119/1.1023

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.