Share This Article:

Quantum Entanglement on Cosmological Scale

Abstract Full-Text HTML XML Download Download as PDF (Size:95KB) PP. 153-159
DOI: 10.4236/jmp.2013.48A014    3,369 Downloads   4,873 Views   Citations

ABSTRACT

It has been indicated that relational logic may serve as the common foundation of quantum mechanics and string theory. A relation may be represented by a spinor and the Cartan-Penrose connection of spinor to geometry, allows to abstract geometry as the outcome of entangled relations-spinors. Our approach goes in parallel with Wheelers pregeometry, where pregeometry, the stage preceding geometry, is based on a calculus of relations-propositions. With a single spinor related to the null cone of Minkowski space-time, we search for the geometry when we couple a left-handed spinor and a right-handed spinor. We find that a Majorana-type coupling gives rise to the ordinary entanglement, while a Diractype coupling generates an extra dimension with two branes coexisting in the extra dimension. One brane hosts lefthanded particles (our brane), while the other brane hosts right-handed particles. A distinct phenomenology accompanies our proposal. The left-right symmetry is achieved with having two mirror branes and the neutrino appears as the ideal mediator between the branes. We may revisit also the dark matter, dark energy issues, with everything on the other brane and in the bulk appearing dark to us. During the brane collision all points are causally connected, making less pressing the inflationary scenario. Our scheme brings closer logic—quantum theory—cosmology, while space-time, rather than an abstract and an a priori construction, appears as the outcome of a quantum logical act.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Kiosses, "Quantum Entanglement on Cosmological Scale," Journal of Modern Physics, Vol. 4 No. 8A, 2013, pp. 153-159. doi: 10.4236/jmp.2013.48A014.

References

[1] M. Green, J. H. Schwarz and E. Witten, “Superstring Theory, Vol. 1: Introduction, Vol. 2: Loop Amplitudes, Anomalies and Phenomenology,” Cambridge University Press, Cambridge, 1987.
[2] M. J. Duff, International Journal of Modern Physics, Vol. A11, 1996, pp. 5623-5642. doi:10.1142/S0217751X96002583
[3] I. Antoniadis, Physics Letters, Vol. B246, 1990, pp. 377-384. doi:10.1016/0370-2693(90)90617-F
[4] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Physics Letters, Vol. B429, 1998, pp. 263-272. doi:10.1016/S0370-2693(98)00466-3
[5] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Physics Letters, Vol. B436, 1998, pp. 257-263. doi:10.1016/S0370-2693(98)00860-0
[6] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Physical Review, Vol. D59, 1999, Article ID: 086004. doi:10.1103/PhysRevD.59.086004
[7] E. Cartan, Bulletin de la Société Mathématique de France, Vol. 41, 1913, pp. 53-96.
[8] E. Cartan, “Lecons sur la Théorie Des Spineurs, Vols 1 and 2, Exposés de Geométrie,” Hermann, Paris, 1938.
[9] R. Penrose, Annals of Physics, Vol. 10, 1960, pp. 171-201. doi:10.1016/0003-4916(60)90021-X
[10] R. Penrose and W. Rindler, “Spinors and Space-Time,” Cambridge University Press, Cambridge, 1984. doi:10.1017/CBO9780511564048
[11] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman, San Francisco, 1973.
[12] J. A. Wheeler, “Pregeometry: Motivations and Prospects,” In: A. R. Marlow, Ed., Quantum Theory and Gravitation, Academic Press, New York, 1980, pp. 1-11.
[13] A. Nicolaidis, International Journal of Modern Physics, Vol. A24, 2009, pp. 1175-1183.
[14] C. Isham, Advances in Theoretical and Mathematical Physics, Vol. 7, 2003, pp. 331-367.
[15] A. Doering and C. Isham, Journal of Mathematical Physics, Vol. 49, 2008, Article ID: 053515. doi:10.1063/1.2883740
[16] S. Abramsky and B. Coecke, “A Categorical Sematics of Quantum Protocols,” Proceedings of the 19th IEEE Conference on Logic in Computer Science (LiCS’04), 2004.
[17] J. Baez, “Quantum Quandaries: A Category-Theoretic Perspective,” In: Structural Foundations of Quantum Gravity, Oxford University Press, Oxford, quantph/0404040.
[18] A. Nicolaidis and V. Kiosses, International Journal of Modern Physics, Vol. A27, Article ID: 1250126.
[19] J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt and N. Turok, Physical Review, Vol. D65, 2002, Article ID: 086007. doi:10.1103/PhysRevD.65.086007
[20] P. J. Steinhardt and N. Turok, Physical Review, Vol. D65, 2002, Article ID: 126003. doi:10.1103/PhysRevD.65.126003
[21] J. Khoury, P. J. Steinhardt and N. Turok, Physical Review Letters, Vol. 92, 2004, Article ID: 031302. doi:10.1103/PhysRevLett.92.031302
[22] E. Majorana, Nuovo Cimento, Vol. 14, 1937, pp. 171-184. doi:10.1007/BF02961314
[23] P. Ramond, “Field Theory: A Modern Primer,” 2nd Edition, Addison-Wesley Publishing Co., Redwood City, 1989.
[24] W. K. Wootters, Physical Review Letters, Vol. 80, 1998, pp. 2245-2248. doi:10.1103/PhysRevLett.80.2245
[25] R. Mosseri and R. Dandoloff, Journal of Physics A: Mathematical and General, Vol. 34, 2001, pp. 10243-10252. doi:10.1088/0305-4470/34/47/324
[26] R. Mosseri, “Two and Three Qubits Geometry and Hopf Fibrations,” In: M. I. Monastyrsky, Ed., Topology in Condensed Matter, Springer Series in Solid—State Sciences, 2006.
[27] P. Levay, Journal of Physics A, Vol. 37, 2004, pp. 1821-1842. doi:10.1088/0305-4470/37/5/024
[28] R. Penrose, “Angular Momentum: An Approach to Combinatorial Space-Time,” In: T. Bastin, Ed., Quantum Theory and Beyond, Cambridge University Press, Cambridge, 1971.
[29] R. Penrose, “On the Nature of Quantum Geometry,” In: J. Klauder, Ed., Magic Without Magic, Freeman, San Francisco, 1972, pp. 333-354.
[30] V. Vedral, Journal of Modern Optics, Vol. 54, 2007, pp. 2185-2192.
[31] P. Horava and E. Witten, Nuclear Physics, Vol. B460, 1996, pp. 506-524. doi:10.1016/0550-3213(95)00621-4
[32] P. Horava and E. Witten, Nuclear Physics, Vol. B475, 1996, pp. 94-114. doi:10.1016/0550-3213(96)00308-2
[33] A. Benoit-Lévy and G. Chardin, Astronomy & Astrophysics, Vol. 537, 2012, Article ID: A78.
[34] A. Linde, Lecture Notes in Physics, Vol. 738, 2008, pp. 1-54. doi:10.1007/978-3-540-74353-8_1
[35] A. Linde, “Inflationary Theory versus Ekpyrotic/Cyclic Scenario,” In: The Future of Theoretical Physics and Cosmology, Cambridge University Press, Cambridge 2002, p. 801.
[36] J. C. Pati and A. Salam, Physical Review D, Vol. 10, 1974, pp. 275-289. doi:10.1103/PhysRevD.10.275
[37] G. Senjanovic and R. N. Mohapatra, Physical Review D, Vol. 12, 1975, pp. 1502-1505. doi:10.1103/PhysRevD.12.1502
[38] R. Foot, H. Lew and R. R. Volkas, Physics Letters B, Vol. 272, 1991, pp. 67-70. doi:10.1016/0370-2693(91)91013-L
[39] H. Davoudiasl and R. N. Mohapatra, New Journal of Physics, Vol. 14, 2012, Article ID: 095011.
[40] F. Petit and M. Sarrazin, Physics Letters B, Vol. 612, 2005, pp. 105-114. doi:10.1016/j.physletb.2005.03.016
[41] A. Nicolaidis, “The Neutrinos of the Neighboring Brane,” 2013, arXiv:1303.6479.
[42] N. Arkani-Hamed, S. Dimopoulos, G. Dvali and N. Kaloper, Journal of High Energy Physics, Vol. 12, 2000, p. 10. doi:10.1088/1126-6708/2000/12/010
[43] M. Kuhlen, J. Guedes, A. Pillepich, P. Madau and L. Mayer, “An Off-Center Density Peak in the Milky Way’s Dark Matter Halo?” 2012, arXiv:1208.4844.
[44] C. Deffayet, G. Dvali and G. Gabadadze, Physical Review D, Vol. 65, 2002, Article ID: 044023. doi:10.1103/PhysRevD.65.044023
[45] A. G. Riess, et al., The Astronomical Journal, Vol. 116, 1998, p. 1009. doi:10.1086/300499
[46] S. Perlmutter, et al., Astrophysical Journal, Vol. 517, 1999, pp. 565-586. doi:10.1086/307221
[47] A. G. Riess, et al., Astrophysical Journal, Vol. 560, 2001, pp. 49-71. doi:10.1086/322348
[48] D. K. Kondepudi and G. W. Nelson, Physical Review Letters, Vol. 50, 1983, pp. 1023-1026. doi:10.1103/PhysRevLett.50.1023
[49] D. K. Kondepudi and G. W. Nelson, Nature, Vol. 314, 1985, pp. 438-441. doi:10.1038/314438a0
[50] J. M. Maldacena, Advances in Theoretical and Mathematical Physics, Vol. 2, 1998, pp. 231-252.
[51] E. Witten, Advances in Theoretical and Mathematical Physics, Vol. 2, 1998, pp. 253-291.
[52] T. Banks and J. Kehayias, Physical Review D, Vol. 84, 2011, Article ID: 086008. doi:10.1103/PhysRevD.84.086008
[53] M. Levin and C. P. Nave, Physical Review Letters, Vol. 99, 2007, Article ID: 120601. doi:10.1103/PhysRevLett.99.120601
[54] G. Vidal, Physical Review Letters, Vol. 99, 2007, Article ID: 220405. doi:10.1103/PhysRevLett.99.220405
[55] B. Swingle, Physical Review D, Vol. 86, 2012, Article ID: 065007.
[56] S. Sachdev, “The Quantum Phases of Matter,” 2012, arXiv:1203.4565v4.
[57] B. Carter, “Large Number Coincidences and the Anthropic Principle in Cosmology,” IAU Symposium 63: Confrontation of Cosmological Theories with Observational Data, Dordrecht, 1974, pp. 291-298.
[58] J. D. Barrow and F. J. Tipler, “The Anthropic Cosmological Principle,” Oxford University Press, Oxford, 1988.
[59] V. G. Gurzadyan and R. Penrose, “Concentric Circles in WMAP Data May Provide Evidence of Violent Pre-Big-Bang Activity,” 2010, arXiv:1011.3706.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.