FDTD Simulation of Three Photon Absorption and Realization of NAND Gate with GaAs Wire Waveguide

Abstract

GaAs has high three photon absorption (3PA) co-efficient at mid-infrared wavelength like2.2mm and waveguides can be formed with this material like silicon nano-wires. It is shown that three-photon-absorption in GaAs wire waveguide can be utilized to form NAND gate. Three-photon-absorption is incorporated in one-dimensional Finite Difference Time Domain (FDTD) equations. The evolution of a probe pulse under the influence of a pump pulse through crossabsorption in a waveguide is investigated using FDTD simulation, where the dominant process is nonlinear three-photon-absorption. Output probe power dependence on input pump power shows that GaAs waveguide NAND gate has higher extinction ratio in comparison to NAND gate using two-photon-absorption in silicon waveguide.

Share and Cite:

Dutta, I. , Chowdhury, A. and Kumbhakar, D. (2013) FDTD Simulation of Three Photon Absorption and Realization of NAND Gate with GaAs Wire Waveguide. Optics and Photonics Journal, 3, 311-317. doi: 10.4236/opj.2013.35048.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. A. B. Miller, D. S. Chemia, D. J. Eilenberger, P. W. Smith, A. C. Gossard and W. T. Tsang, “Large Room Temperature Optical Nonlinearity in GaAs/Ga1-xAlxAs Multiple Quantum Structures,” Applied Physics Letters Vol. 41, No. 8, 1982, pp. 679-681. doi:10.1063/1.93648
[2] S. M. Jensen, “The Nonlinear Coherent Coupler,” IEEE Journal of Quantum Electronics, Vol. 18, No. 10, 1982, pp. 1580-1583. doi:10.1109/JQE.1982.1071438
[3] X. J. Meng and N. Okamoto, “Improved Coupled Mode Theory for Nonlinear Directional Couplers,” IEEE Journal of Quantum Electronics, Vol. 27, No. 5, 1991, pp. 1175-1181. doi:10.1109/3.83374
[4] I. M. Uzonov, R. Muschall, M. Golles, Y. S. Kivahar, B. A. Malomed and F. Lederer, “Pulse Switching in Nonlinear Fiber Directional Couplers,” Physical Review E, Vol. 51, No. 3, 1995, pp. 2527-2537. doi:10.1103/PhysRevE.51.2527
[5] K. G. Kalonakis and E. Palspalkis, “Optical Switching in a Symmetric Three-Waveguide Nonlinear Directional Coupler,” Journal of Modern Optics, Vol. 52, No. 13, 2005, pp. 1885-1892. doi:10.1080/09500340500141755
[6] D. Kumbhakar, “Nonlinear Coherent Directional Coupler: Coupled Mode Theory and BPM Simulation,” International Journal of Optics, Vol. 2012, 2012, Article ID: 173250.
[7] S. Trillo and S. Wabnitz, “Nonlinear Dynamics and Instabilities of Coupled Waves and Solitons in Optical Fibers,” In: C. G. Someda and G. Stegeman, Eds., Anisotropic and Nonlinear Optical Waveguides, Elsevier, Amsterdam, 1992.
[8] P. R. Berger, P. K. Bhattacharya and S. Gupta, “A Waveguide Directional Coupler with a Nonlinear Coupling Medium,” IEEE Journal of Quantum Electronics, Vol. 27, No. 3, 1991, pp. 788-795. doi:10.1109/3.81390
[9] M. J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Press, Dordrecht, 2002.
[10] K. E. Stubkjar, “Semiconductor Optical Amplifier-Based All-Optical Gates for High Speed Processing,” IEEE Journal on Selected Topics on Quantum Electronics, Vol. 6, No. 6, 2000, pp. 1428-1435. doi:10.1109/2944.902198
[11] K. Shimomura and S. Arai, “Semiconductor Waveguide Optical Switches and Modulators,” Fiber and Integrated Optics, Vol. 13, No. 1, 1994, pp. 65-100. doi:10.1080/01468039408202222
[12] M. F. S. Ferreira, “Optical Amplifiers,” In: R. G. Driggers, Ed., Encylopedia of Optical Engineering, Taylor & Francis, London, 2011.
[13] Q. Lin, O. J. Painter and G. P. Agrawal, “Nonlinear Optical Phenomena in Silicon Waveguides: Modeling and Applications,” Optics Express, Vol. 15, No. 25, 2007, pp. 16604-16644. doi:10.1364/OE.15.016604
[14] Q. Xu and M. Lipson, “All-Optical Logic Based on Silicon Micro-Ring Resonators,” Optics Express, Vol. 15, No. 3, 2007, pp. 924-929. doi:10.1364/OE.15.000924
[15] Q. Xu, V. R. Almeida, R. R. Panepucci and M. Lipson, “Experimental Demonstration of Guiding and Confining Light in Nanometer-Size Low Refractive-Index Material,” Optics Letters, Vol. 29, No. 14, 2004, pp. 1626-1628. doi:10.1364/OL.29.001626
[16] T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets and H. K. Tsang, “High Speed Logic Gate Using Two-Photon Absorption in Silicon Waveguides,” Optics Communications, Vol. 265, No. 1, 2006, pp. 171-174. doi:10.1016/j.optcom.2006.03.031
[17] K. Mukherjee and D. Kumbhakar, “Simulation and Method Of Implementation of All Optical Logic Gates Based on Two Photon Absorption in Silicon Wire Wave Guide,” Optik, Vol. 123, No. 6, 2011, pp. 489-493. doi:10.1016/j.ijleo.2011.05.012
[18] V. M. N. Passaro and F. De Leonards, “All Optical AND Gate Based on Raman Effect in Silicon-On-Insulator Waveguide,” Optical and Quantum Electronics, Vol. 38, No. 9-11, 2006, pp. 877-888. doi:10.1007/s11082-006-9021-0
[19] D. Dimitropoulos, R. Claps, Y. Han and B. Jalali, “Nonlinear Optics in Silicon Waveguides: Stimulated Raman Scattering and Two-Photon Absorption,” Proceedings of SPIE Vol. 4987, Integrated Optics: Devices, Materials, and Technologies VII, San Jose, 2003, pp. 140-148.
[20] J. Y. Lee, L. Yin, G. P. Agrawal and P. M. Fauchet, “Ultrafast Optical Switching Based on Nonlinear Polarization Rotation in Silicon Waveguides,” Optics Express, Vol. 18, No. 11, 2010, pp. 11514-11523. doi:10.1364/OE.18.011514
[21] F. D. Leonardis and V. M. N. Passaro, “Efficient Wavelength Conversion in Optimized SOI Waveguides via Pulsed Four-Wave Mixing,” Journal of Lightwave Technology, Vol. 29, No. 23, 2011, pp. 3523-3535. doi:10.1109/JLT.2011.2169937
[22] S. M. Gao, Z. Q. Li and X. Z. Zang, “Power-Attenuated Optimization for Four-Wave Mixing-Based Wavelength Conversion in Silicon Nanowire Waveguides,” Journal of Electromagnetic waves and Applications, Vol. 24, No. 8-9, 2010, pp. 1255-1265. doi:10.1163/156939310791586142
[23] R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi1, T. Isu and M. Tsuchiya, “Ultrahigh Relative Refractive Index Contrast GaAs Nanowire Waveguides,” Applied Physics Express, Vol. 1, No. 12, 2008, pp. 122101-122103. doi:10.1143/APEX.1.122101
[24] A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gérard and W. L. Vos, “Kerr and Free Carrier Ultrafast All-Optical Switching of GaAs/AlAs Nanostructures near the Three-Photon Edge of GaAs,” Journal of Applied Physics, Vol. 104, No. 8, 2008, Article ID: 083105. doi:10.1063/1.3000098
[25] G. Z. Mashanovich, M. M. Milosevic, M. N. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo and Y. Hu, “Low Loss Silicon Waveguides for The Mid-Infrared,” Optic Express, Vol. 19, No. 8, 2011, pp. 7112-7119. doi:10.1364/OE.19.007112
[26] E. Guillotel, M. Ravaro, F. Ghiglieno, M. Savanier, I. Favero, S. Ducci and G. Leo, “GaAs/AlOx Nonlinear Waveguides for Infrared Tunable Generation,” In: K. Y. Kim, Ed., Advances in Optical and Photonic Devices, Chapter 8, Croatia, 2010, pp. 137-160. doi:10.5772/7144
[27] A. R. Chowdhury, I. Dutta, K. Mukherjee and D. Kumbhakar, “FDTD Simulation of Two Photon Absorption in Silicon Waveguide and Realization of All Optical Logic Gates,” Proceedings of Frontiers in Optics and Photonics, XXXVI OSI Symposium, Delhi, 3-5 December 2011, p. 245.
[28] A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite Difference Time Domain Method,” 2nd Edition, Artech House, Norwood, 2000.
[29] C. M. Dissanayake, M Premaratne, I. D. Rukhlenko and G. P. Agrawal, “FDTD Modeling of Anisotropic Nonlinear Optical Phenomena in Silicon Waveguides,” Optic Express, Vol. 18, No. 20, 2010, pp. 21427-21448. doi:10.1364/OE.18.021427
[30] N. Suzuki, “FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides,” Journal of Lightwave Technology, Vol. 25, No. 9, 2007, pp. 2495-2501. doi:10.1109/JLT.2007.903298
[31] E. P. Kosmidou and T. D. Tsiboukis, “An FDTD Analysis of Photonic Crystal Waveguides Comprising Third-Order Nonlinear Materials,” Optical and Quantum Electronics, Vol. 35, No. 10, 2003, pp. 931-946. doi:10.1023/A:1025122517879
[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipe in Fortran 90,” Cambridge University Press, Cambridge, 2001.
[33] G. P. Agrawal, “Nonlinear Fiber Optics,” 3rd Edition, Academic Press, San Diego, 2001.
[34] W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo and M. M. Fejer, “Multiphoton Absorption and Nonlinear Refraction of GaAs in the Mid-Infrared,” Optics Letters, Vol. 32, No. 6, 2007, pp. 668-670. doi:10.1364/OL.32.000668

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.