A Simple and Efficient Protocol for the Mass Propagation of Vanilla planifolia

Abstract

The present study describes a direct shoot regeneration-based micropropagation procedure for Vanilla planifolia. Two types of explant (i.e. shoot apex and stem nodal segment) were screened for their shoot induction potential following a three-month treatment with 6-benzylaminopurine (BAP) and α-Naphthaleneacetic acid (NAA). Results indicated that the shoot apices were poor candidates for shoot induction whereas the stem nodal segments showed potential for shoot initiation at a rate of up to 6 shoots/explant. Stem nodal segments were the most responsive as shoots formed (55 shoots) directly following treatments with 1 mg/L BAP at half strength MS medium after the third subculture. In addition, more shoots were produced on solid medium treatments compared to the liquid medium treatments in two strengths of mediums tested. Regenerated plantlets derived from the 1 mg/L of BAP treatment were induced to root following a one month culture in growth regulator-free MS medium. There was 90% survival rate of the rooted plantlets after acclimatization in the greenhouse. The findings in the present study would be helpful for large-scale mass propagation of Vanilla planifolia using this simple and efficient protocol.

Share and Cite:

A. Zuraida, K. Fatin Liyana Izzati, O. Nazreena, W. Wan Zaliha, C. Che Radziah, Z. Zamri and S. Sreeramanan, "A Simple and Efficient Protocol for the Mass Propagation of Vanilla planifolia," American Journal of Plant Sciences, Vol. 4 No. 9, 2013, pp. 1685-1692. doi: 10.4236/ajps.2013.49205.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. R. Goodenough, “Vanilla, Vanillin and Vanillin Derivatives,” Bakers Digest, Vol. 56, 1982, pp. 8-10.
[2] Ranadive and A. S. Vanilla-Cultivaton, “Curing Chemistry, Technology and Commercial Products,” Elsevier Scientific Publication, Amsterdam, Vol. 34, 1994, pp. 517-577.
[3] K. Kalimuthu, R. Senthilkumar and N. Murugalatha, “Regeneration and Mass Multiplication of Vanilla planifolia Andr.—A Tropical Orchid,” Current Science, Vol. 91, No. 10, 2006, pp. 1401-1403.
[4] P. Ayyappan, “Vanilla—A Money Making Venture for Ambitious Farmers,” Kisan World, Vol. 7, 1990, pp. 24-26.
[5] D. Knorr, et al., “Biosynthesis and Yield Improvement of Food Ingredient from Plant Cell and Tissue Culture,” Food Technology, Vol. 47, No. 12, 1993, pp. 57-63.
[6] Z. Gu, J. Arditti and L. P. Nyman, “Vanilla Planifoiia: Callus Induction and Plantlet Production in Vitro,” Lindleyana, Vol. 2, No. 1, 1987, pp. 48-52.
[7] G. Davidonis and D. Knorr, “Callus Formation and Shoot Regeneration in Vanilla planifolia,” Food Biotechnology, Vol. 5, No. 1, 1991, pp. 59-66. doi:10.1080/08905439109549791
[8] V. J. Philip and S. A. Z. Nainar, “Clonal Propagation of Vanilla planifolia (Salisb) Ames Using Tissue Culture,” Journal of Plant Physiology, Vol. 122, No. 3, 1986, pp. 211-215. doi:10.1016/S0176-1617(86)80119-5
[9] H. Kononowicz and J. Janick, “In Vitro Propagation of Vanilla planifolia,” Hort Science, Vol. 19, 1984, pp. 58-59.
[10] P. Giridhar and G. A. Ravishankar, “Efficient Micropropagation of Vanilla planifolia Andr. under Influence of Thidiazuron, Zeatin and Coconut Milk,” Indian Journal of Biotechnology, Vol. 3, No. 1, 2004, pp. 113-118.
[11] B. C. Tan, C. F. Chin and P. Alderson, “An Improved Plant Regeneration of Vanilla planifolia Andrews,” Plant Tissue Culture and Biotechnology, Vol. 21, No. 1, 2011, pp. 27-33.
[12] A. Malek, D. Khanam, M. Khatun, M. H. Molla and M. A. Mannan, “In Vitro Culture of Pointed Gourd (Trichosanthes Dioica Roxb.),” Bangladesh Journal of Agricultural Research, Vol. 35, No. 1, 2010, pp. 135-142.
[13] J. M. Hutchinson, “Tissue Culture: Propagation of Fruit Trees,” In: A. N. Roy, Ed., Proceedings of COSTED Symposium on Tissue Culture of Economically Important Plants, Singapore, 1981, pp. 119-120.
[14] A. Zaman, R. Islam, M. Hossain, O. I. Joarder, A. Ahad and A. C. Barman, “Clonal Propagation through in Vitro Shoot Proliferation of Nodal Explants of Seven Mulberry Genotypes,” Plant Tissue Culture, Vol. 2, No. 2, 1992, pp. 71-74.
[15] M. Soledad Diaz, P. Lorena, C. F. Ana and E. G. Marta, “In Vitro Propagation of Muna-Muna (Clinopodium odorum (Griseb.) Harley),” Biotechnology Research International, Vol. 2012, 2012, pp. 1-6. doi:10.1155/2012/196583
[16] E. Firoozabady and N. Gutterson, “Cost Effective in Vitro Propagation Methods for Pineapple,” Plant Cell Reports, Vol. 21, No. 9, 2003, pp. 844-850.
[17] A. R. Zuraida, A. H. Nurul Shahnadz, A. Harteeni, S. Roowi, C. M. Z. Che Radziah and S. Sreeramanan, “A Novel Approach for Rapid Micropropagation of Maspine Pineapple (Ananas comosus L.) Shoots Using Liquid Shake Culture System,” African Journal of Biotechnology, Vol. 10, No. 19, 2011, pp. 3859-3866.
[18] L. M. Alderete, K. Adriana and S. E. Alejandro, “Establishment of an in Vitro Micropropagation Protocol for Mecardonia tenella,” Electronic Journal of Biotechnology, Vol. 9, No. 3, 2006, pp. 263-266.
[19] M. Boulay, “4 Redwood (Sequoia sempervirens),” Biotechnology in Agriculture and Forestry, Vol. 5, 1989, pp. 549-573. doi:10.1007/978-3-642-61535-1_29
[20] Z. Abebe, M. Ayelign, T. Alemayehu and T. Wondyfraw, “Efficient in Vitro Multiplication Protocol for Vanilla planifolia Using Nodal Explants in Ethiopia,” African Journal of Biotechnology, Vol. 8, No. 24, 2009, pp. 6817-6821.
[21] C. D. Hung, K. Johnson and F. Torpy, “Liquid Culture for Efficient Micropropagation of Wasabia Japonica (MIQ.) Matsumura,” In Vitro Cellular Developmental Biology-Plant, Vol. 42, No. 6, 2006, pp. 548-552. doi:10.1079/IVP2006805
[22] P. V. Ammirato, “Yams,” In: P. V. Ammirato, D. A. Evans, W. R. Sharp, Y. Yamada, Eds., Handbook of Plant Cell Culture, Macmillan, New York, 2004, pp. 329-354.
[23] R. Rafia, N. K. Azra, A. G. Bashir and A. Seema, “Effect of BAP and NAA on Shoot Regeneration in Prunella vulgaris,” Journal of Natural Sciences and Mathematics, Qassim University, Vol. 3, No. 1, 2009, pp. 21-26.
[24] W. A. Wan Nurul Hidayah, J. S. Norrizah, S. M. Sharifah Aminah, S. A. Sharipah Ruzaina and P. Faezah, “Effect of Medium Strength and Hormones Concentration on Regeneration of Pogostemon cablin using Nodes Explant,” Asian Journal of Biotechnology, Vol. 4, No. 1, 2012, pp. 46-52. doi:10.3923/ajbkr.2012.46.52
[25] N. Turgut-Kara and S. Ari, “Micropropagation of Astragalus maximus Willd,” Biotechnology & Biotechnological Equipment, Vol. 20, No. 1, 2006, pp. 20-22.
[26] E. Catapan, M. Luis, B. Silva, N. F. Moreno and A. M. Viana, “Micropropagation, Callus and Root Culture of Phyllanthus urinaria (Euphorbiaceae),” Plant Cell, Tissue and Organ Culture, Vol. 70, No. 3, 2002, pp. 301-309. doi:10.1023/A:1016529110605
[27] J. P. Luo and J. F. Jia, “Callus Induction and Plant Regeneration from Hypocotyl Explants of Forage Legume Astragalus adsurgens,” Plant Cell Reports, Vol. 17, No. 6-7, 1998, pp. 567-570. doi:10.1007/s002990050443
[28] J. L. Edson, D. L. Wenny, A. Leege-Brusven, R. L. Everett and D. M. Henderson, “Conserving Threatened Rare Plants: Some Nursery Strategies,” National Proceedings, Forest and Conservation Nursery Associations, No. 257, 1994, pp. 150-157.
[29] S. P. O. Werbruck and P. C. Debergh, “Applied Aspect of Plant Regeneration (6A. Micropropagation),” In: R. A. Dixon and R. A. Gonzales, Eds., Plant Cell Culture: A Practical Approach, 1994, pp. 127-135.
[30] S. Majumder, M. M. Rahman and S. K. Bhadra, “Micropropagation of Scoparia dulcis Linn. through Induction of Indirect Organogenesis,” Asia-Pacific Journal of Molecular Biology and Biotechnology, Vol. 19, No. 1, 2011, pp. 11-17.
[31] A. Biswas, M. Roy, M. A. Bari and S. K. Bhadra, “In Vitro Propagation of Abrus precatorius L.—A Rare Medicinal Plant of Chittagong Hill Tracts,” Plant Tissue Culture & Biotechnology, Vol. 17, No. 1, 2007, pp. 59-64.
[32] M. Jawahar, S. Ravipaul and M. Jeyaseelan, “In Vitro Regeneration of Vitex negundo a Multipurpose Woody Aromatic Medicinal Shrub,” Plant Tissue Culture & Biotechnology, Vol. 18, No. 1, 2008, pp. 37-42.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.