Share This Article:

Sobolev Gradient Approach for Huxley and Fisher Models for Gene Propagation

Abstract Full-Text HTML Download Download as PDF (Size:350KB) PP. 1212-1219
DOI: 10.4236/am.2013.48163    3,558 Downloads   4,730 Views   Citations

ABSTRACT

The application of Sobolev gradient methods for finding critical points of the Huxley and Fisher models is demonstrated. A comparison is given between the Euclidean, weighted and unweighted Sobolev gradients. Results are given for the one dimensional Huxley and Fisher models.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Raza and S. Sial, "Sobolev Gradient Approach for Huxley and Fisher Models for Gene Propagation," Applied Mathematics, Vol. 4 No. 8, 2013, pp. 1212-1219. doi: 10.4236/am.2013.48163.

References

[1] J. Karatson and L. Loczi, “Sobolev Gradient Preconditioning for the Electrostatic Potential Equation,” Computers & Mathematics with Applications, Vol. 50, No. 7, 2005, pp. 1093-1104. doi:10.1016/j.camwa.2005.08.011
[2] R. Glowinski, “Numerical Methods for Nonlinear Varia tional Problems,” Springer-Verlag, New York, 1997.
[3] A. Zenisek, “Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations,” Academic Press, London, 1990.
[4] I. Farago and J. Karatson, “Numerical Solution of Nonlin ear Elliptic Problems via Preconditioning Operators,” Ad vances in Computation, Vol. II, Nova Science Publishers, New York, 2002.
[5] C. T. Kelley, “Iterative Methods for Linear and Nonlinear Equations,” SIAM: Frontiers in Applied Mathematics, Philadelphia, 1995.
[6] J. W. Neuberger, “Sobolev Gradients and Differential Equations,” Springer Lecture Notes in Mathematics 1670, Springer-Verlag, New York, 1997.
[7] W. T. Mahavier, “A Numerical Method Utilizing Weight ed Sobolev Descent to Solve Singluar Differential Equa tions,” Nonlinear World, Vol. 4, No. 4, 1997, pp. 435-455.
[8] D. Mujeeb, J. W. Neuberger and S. Sial, “Recursive form of Sobolev Gradient Method for ODEs on Long Intervals,” International Journal of Computer Mathematics, Vol. 85, No. 11, 2008, pp. 1727-1740. doi:10.1080/00207160701558465
[9] C. Beasley, “Finite Element Solution to Nonlinear Partial Differential Equations,” PhD Thesis, University of North Texas, Denton, 1981.
[10] S. Sial, J. Neuberger, T. Lookman and A. Saxena, “Energy Minimization Using Sobolev Gradients: Application to Phase Separation and Ordering,” Journal of Computation al Physics, Vol. 189, No. 1, 2003, pp. 88-97. doi:10.1016/S0021-9991(03)00202-X
[11] S. Sial, J. Neuberger, T. Lookman and A. Saxena, “En ergy Minimization Using Sobolev Gradients Finite Ele ment Setting,” Proceedings of World Conference on 21st Century Mathematics, Lahore, 4-6 March 2005, pp. 234 243.
[12] S. Sial, “Sobolev Gradient Algorithm for Minimum Ener gy States of s-Wave Superconductors: Finite Element Set ting,” Superconductor Science and Technology, Vol. 18, No. 5, 2005, pp. 675-677. doi:10.1088/0953-2048/18/5/015
[13] N. Raza, S. Sial and S. S. Siddiqi, “Sobolev Gradient Ap proach for the Time Evolution Related to Energy Minimi zation of Ginzberg-Landau Energy Functionals,” Journal of Computational Physics, Vol. 228, No. 7, 2009, pp. 2566-2571. doi:10.1016/j.jcp.2008.12.017
[14] J. Karatson and I. Farago, “Preconditioning Operators and Sobolev Gradients for Nonlinear Elliptic Problems,” Com puters & Mathematics with Applications, Vol. 50, No. 7, 2005, pp. 1077-1092. doi:10.1016/j.camwa.2005.08.010
[15] J. Karatson, “Constructive Sobolev Gradient Precondi tioning for Semilinear Elliptic Systems,” Electronic Jour nal of Differential Equations, Vol. 75, No. 1, 200, pp. 1-26.
[16] J. Garcia-Ripoll, V. Konotop, B. Malomed and V. Perez Garcia, “A Quasi-Local Gross-Pitaevskii Equation for At tractive Bose-Einstein Condensates,” Mathematics and Computers in Simulation, Vol. 62, No. 1-2, 2003, pp. 21 30. doi:10.1016/S0378-4754(02)00190-8
[17] B. Brown, M. Jais and I. Knowles, “A Variational Ap proach to an Elastic Inverse Problem,” Inverse Problems, Vol. 21, No. 6, 2005, pp. 1953-1973. doi:10.1088/0266-5611/21/6/010
[18] I. Knowles and A. Yan, “On the Recovery of Transport Parameters in Groundwater Modelling,” Journal of Com putational and Applied Mathematics, Vol. 71, No. 1-2, 2004, pp. 277-290. doi:10.1016/j.cam.2004.01.038
[19] R. J. Renka and J. W. Neuberger, “Sobolev Gradients: Introduction, Applications,” Contmporary Mathematics, Vol. 257, 2004, pp. 85-99.
[20] W. B. Richardson, “Sobolev Preconditioning for the Pois son-Boltzman Equation,” Computer Methods in Applied Mechanics and Engineering, Vol. 181, No. 4, 2000, pp. 425-436. doi:10.1016/S0045-7825(99)00182-6
[21] D. Mujeeb, J. W. Neuberger and S. Sial, “Recursive Forms of Sobolev Gradient for ODEs on Long Intervals,” International Journal of Computer Mathematics, Vol. 85, No. 11, 2008, pp. 1727-1740. doi:10.1080/00207160701558465
[22] R. J. Renka, “Geometric Curve Modeling with Sobolev Gradients,” 2006. www.cse.unt.edu/renka/papers/curves.pdf
[23] R. Nittka and M. Sauter, “Sobolev Gradients for Differen tial Algebraic Equations,” Journal of Differential Equations, Vol. 42, No. 1, 2008, pp. 1-31.
[24] R. A. Fisher, “The Wave of Advance of Advantageous Genes,” Annals of Eugenics, Vol. 7, No. 4, 1937, pp. 355 369. doi:10.1111/j.1469-1809.1937.tb02153.x
[25] R. Courant, K. O. Friedrichs and H. Lewy, “Uber die Par tiellen Differenzengleichungen der Mathematisches Phy sik,” Mathematische Annalen, Vol. 100, No. 1, 1928, pp. 32-74. doi:10.1007/BF01448839

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.