Share This Article:

Influence of magnetic iron oxide nanoparticles on red blood cells and Caco-2 cells

Abstract Full-Text HTML Download Download as PDF (Size:236KB) PP. 439-443
DOI: 10.4236/abb.2010.15057    5,525 Downloads   11,820 Views   Citations

ABSTRACT

The interactions of two types of cells (red blood cells, Caco-2 cells) with magnetic iron oxide nanoparticles (non-grafted, citrate-grafted, dendrimer-grafted) of 11 nm in size have been investigated. We focused on two important physiological parameters of the cells, the intracellular pH and the intracellular Ca2+ content. The results show that the nanoparticles do not have a significant influence on the pH and Ca2+ content of Caco-2 cells. The Ca2+ content of red blood cells is also not affected but the intracellular pH is slightly reduced.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Moersdorf, D. , Hugounenq, P. , Phuoc, L. , Mamlouk-Chaouachi, H. , Felder-Flesch, D. , Begin-Colin, S. , Pourroy, G. and Bernhardt, I. (2010) Influence of magnetic iron oxide nanoparticles on red blood cells and Caco-2 cells. Advances in Bioscience and Biotechnology, 1, 439-443. doi: 10.4236/abb.2010.15057.

References

[1] Pankhurst, Q.A., Connolly, J., Jones, S.K. and Dobson, J. (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys, 36, R167-R181.
[2] Park, K., Lee, S., Kang, E., Kim, K., Choi, K. and Kwon, I.C. (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater, 19, 1553-1566.
[3] Win, K.Y. and Feng, S. (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26, 2713-2722.
[4] Hillyer, J.F. and Albrecht, R.M. (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci, 90, 1927-1936.
[5] Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Im Hof, V., Heyder, J. and Gehr, P. (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect, 113, 1555-1560.
[6] Rothen-Rutishauser, B., Schürch, S., Haenni, B., Kapp, N. and Gehr, P. (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol, 40, 4353-4359.
[7] Apopa, P.L., Qian, Y., Shao, R., Guo, N.L., Schwegler-Berry, D., Pacurari, M., Porter, D., Xianglin, S., Vallyathan, V., Castranova, V. and Flynn, D.C. (2009) Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodelling. Part Fibre Toxicol, 6:1.
[8] Daou, T.J., Pourroy, G., Begin-Colin, S., Greneche, C. Ulhaq-Bouillet, J.M., Legare, P., Bernhardt, P., Leuvrey, C. and Rogez, G. (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater, 18, 4399-4404.
[9] Daou, T.J., Pourroy, G., Greneche, J.M., Bertin, A., Felder-Flesch, D. and Begin-Colin, S. (2009) Water soluble dendronized iron oxide nanoparticles. Dalton Transactions, 23, 4442-4449.
[10] Basly, B., Felder-Flesch, D., Perriat, P., Billotey, C., Taleb, J., Pourroy, G. and Begin-Colin, S. (2010) Dendronized iron oxide nanoparticles as contrast agents for MRI. Chem Comm, 46, 985-987.
[11] Grinstein, S., Cohen, S. and Rothstein, A. (1984) Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol, 83, 341-369.
[12] Kummerow, D., Hamann, J., Browning, J.A., Wilkins, R., Ellory, J.C. and Bernhardt, I. (2000) Variations of intracellular pH in human erythrocytes via K+(Na+)/H+ exchange under low ionic strength conditions. J Membr Biol, 176, 207-216.
[13] Bernhardt, I. and Weiss, E. (2003) Passive membrane permeability for ions and the membrane potential. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 83-109.
[14] Knauf, P.A. and Pal, P. (2003) Band 3 mediated transport. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 253-301.
[15] Kaestner, L., Tabellion, W., Weiss, E., Bernhardt, I. and Lipp, P. (2006) Calcium imaging of individual erythrocates: Problems and approaches. Cell Calcium, 39, 13-19.
[16] Bennekou, P. and Christophersen, P. (2003) Ion channels. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 139-152.
[17] Leveritt, L.B., Hellums, J.D., Alfrey, C.P. and Lynch, E. C. (1972) Red blood cell damage by shear stress. Biophys J, 12, 257-273.
[18] Wan, J., Ristenpart, W.D. and Stone, H.A. (2008) Dynamics of shear-induced ATP release from red blood cells. PNAS, 105, 16432-16437.
[19] Nikinmaa, M. (2003) Gas transport. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 489-509.
[20] Betz, T., Bakowsky, U., Mueller, M.R., Lehr, C.M. and Bernhardt, I. (2007) Conformational change of membrane proteins leads to shape changes of red blood cells. Bioelectrochemistry, 70, 122-126.
[21] Creanga, D.E., Culea, M., Nadejde, C., Oancea, S., Curecheriu, L. and Racuciu, M. (2009) Magnetic nanoparticle effects on the red blood cells. J Phys: Conf Ser, 170, 012019.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.