Contribution of Estrogen to Sex Dimorphic Expression of Cardiac Natriuretic Peptide and Nitric Oxide Synthase Systems in ANP Gene-Disrupted Mice

Abstract

Background: Sex dimorphism in the prevalence, onset, development and progression of cardiovascular disease (CVD) is well recognized, but the mechanisms whereby sex hormones are believed to confer cardioprotection are still not fully understood. Objective: This study more closely delineates the effect of 17β-Estradiol (E2) on the expression and signaling of the cardiac NP and NOS systems, well-known cardioprotective modulators of the cardiac hypertrophy (CH) response, that both contribute to downstream production of cyclic guanosine 3’,5’-monophosphate (cGMP). Materials and Methods: Ovariectomized (OVX) female ANP+/+ and ANP-/- mice, 6 - 7 weeks old, were subjected to a five-week treatment with E2 (100 μg/100 μL/day) or vehicle (VEH). Left ventricle from these treatment groups, along with that from age-matched male ANP+/+ and ANP-/- mice was used to assess expression of these systems by real-time quantitative PCR (qPCR). Left ventricle tissue and plasma cGMP were measured by enzyme immunoassay to assess alterations in resultant downstream signaling. Results: NP system expression was unchanged across genotype, sex and E2 treatment. Sex-specific differences in NOS system expression were observed; female mice showed an increased expression of NOS system genes that were significantly elevated in all but one of the E2 treatment groups. Left ventricle tissue cGMP remained unchanged across genotype, sex and E2 treatment. Plasma cGMP levels were unchanged in ANP+/+ treatment groups. In ANP-/- treatment groups, plasma cGMP in the female OVX-E2 mice was significantly higher compared to male and female OVX-VEH mice. Conclusion: These findings demonstrate that in the absence of ANP, E2 upregulates cardiac NOS system expression to produce cGMP. This study confirms the importance of the cardiac NOS system in females; this particular system may be a promising future target for sex-specific treatments and therapies for CVD in women.

Share and Cite:

P. Wong, D. Armstrong, M. Tse, N. Ventura and S. Pang, "Contribution of Estrogen to Sex Dimorphic Expression of Cardiac Natriuretic Peptide and Nitric Oxide Synthase Systems in ANP Gene-Disrupted Mice," Open Journal of Endocrine and Metabolic Diseases, Vol. 3 No. 4B, 2013, pp. 1-11. doi: 10.4236/ojemd.2013.34A2001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, C. S. Moy, M. E. Mussolino, G. Nichol, N. P. Paynter, P. J. Schreiner, P. D. Sorlie, J. Stein, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, on Behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Executive Summary: Heart Disease and Stroke Statistics: 2013 Update: A Report from the American Heart Association,” Circulation, Vol. 127, No. 1, 2013, pp. 143-152. doi:10.1161/CIR.0b013e318282ab8f
[2] J. Johannes and C. N. Bairey Merz, “Is Cardiovascular Disease in Women Inevitable?” Cardiology in Review, Vol. 19, No. 2, 2011, pp. 76-80. doi:10.1097/CRD.0b013e318209a711
[3] W. S. Post, M. G. Larson, and D. Levy, “Impact of Left Ventricular Structure on the Incidence of Hypertension. The Framingham Heart Study,” Circulation, Vol. 90, No. 1, 1994, pp. 179-185. doi:10.1161/01.CIR.90.1.179
[4] N. Frey and E. N. Olson, “Cardiac Hypertrophy: The Good, the Bad, and the Ugly,” Annual Review of Physiology, Vol. 65, No. 1, 2003, pp. 45-79. doi:10.1146/annurev.physiol.65.092101.142243
[5] R. Feil, S. M. Lohmann, H. de Jonge, U. Walter and F. Hofmann, “Cyclic GMP-Dependent Protein Kinases and the Cardiovascular System: Insights from Genetically Modified Mice,” Circulation Research, Vol. 93, No. 10, 2003, pp. 907-916. doi:10.1161/01.RES.0000100390.68771.CC
[6] T. Nishikimi, N. Maeda and H. Matsuoka, “The Role of Natriuretic Peptides in Cardioprotection,” Cardiovascular Research, Vol. 69, No. 2, 2006, pp. 318-328. doi:10.1016/j.cardiores.2005.10.001
[7] J. Hammond and J.-L. Balligand, “Nitric Oxide Synthase and Cyclic GMP Signaling in Cardiac Myocytes: From Contractility to Remodeling,” Journal of Molecular and Cellular Cardiology, Vol. 52, No. 2, 2012, pp. 330-340. doi:10.1016/j.yjmcc.2011.07.029
[8] P. G. Wong, D. W. J. Armstrong, M. Y. Tse, E. P. A. Brander and S. C. Pang, “Sex-Specific Differences in Natriuretic Peptide and Nitric Oxide Synthase Expression in ANP Gene-Disrupted Mice,” Molecular and Cellular Biochemistry, Vol. 374, No. 1, 2012, pp. 125-135. doi:10.1007/s11010-012-1511-8
[9] E. Barrett-Connor and D. Grady, “Hormone Replacement Therapy, Heart Disease, and Other Considerations,” Annual Review of Public Health, Vol. 19, 1998, pp. 55-72. doi:10.1146/annurev.publhealth.19.1.55
[10] E. Angelis, M. Y. Tse and S. C. Pang, “Interactions between Atrial Natriuretic Peptide and the Renin-Angiotensin System during Salt-Sensitivity Exhibited by the proANp Gene-Disrupted Mouse,” Molecular and Cellular Biochemistry, Vol. 276, No. 1, 2005, pp. 121-131. doi:10.1007/s11010-005-3672-1
[11] S. J. Sangaralingham, M. Y. Tse and S. C. Pang, “Estrogen Delays the Progression of Salt-Induced Cardiac Hypertrophy by Influencing the Renin-Angiotensin System in Heterozygous proANP Gene-Disrupted Mice,” Molecular and Cellular Biochemistry, Vol. 306, No. 1, 2007, pp. 221-230. doi:10.1007/s11010-007-9573-8
[12] S. J. Sangaralingham, M. Y. Tse and S. C. Pang, “Estrogen Protects against the Development of Salt-Induced Cardiac Hypertrophy in Heterozygous proANP Gene-Disrupted Mice,” Journal of Endocrinology, Vol. 194, No. 1, 2007, pp. 143-152. doi:10.1677/JOE-07-0130
[13] L. A. Leinwand, “Sex Is a Potent Modifier of the Cardiovascular System,” Journal of Clinical Investigation, Vol. 112, No. 3, 2003, pp. 302-307. doi:10.1172/JCI19429
[14] C. Vassalle, T. Simoncini, P. Chedraui and F. R. Pérez-López, “Why Sex Matters: The Biological Mechanisms of Cardiovascular Disease,” Gynecological Endocrinology, Vol. 28, No. 9, 2012, pp. 746-751. doi:10.3109/09513590.2011.652720
[15] G. M. C. Rosano, C. Vitale, G. Marazzi and M. Volterrani, “Menopause and Cardiovascular Disease: The Evidence,” Climacteric, Vol. 10, No. 1, 2007, pp. 19-24. doi:10.1080/13697130601114917
[16] W. B. Kannel, M. C. Hjortland, P. M. McNamara and T. Gordon, “Menopause and Risk of Cardiovascular Disease: The Framingham Study,” Annals of Internal Medicine, Vol. 85, No. 4, 1976, pp. 447-452. doi:10.7326/0003-4819-85-4-447
[17] S. R. Salpeter, J. M. E. Walsh, T. M. Ormiston, E. Greyber, N. S. Buckley and E. E. Salpeter, “Meta-Analysis: Effect of Hormone-Replacement Therapy on Components of the Metabolic Syndrome in Postmenopausal Women,” Diabetes Obesity & Metabolism, Vol. 8, No. 5, 2006, pp. 538-554. doi:10.1111/j.1463-1326.2005.00545.x
[18] J. Heineke and J. D. Molkentin, “Regulation of Cardiac Hypertrophy by Intracellular Signalling Pathways,” Nature Reviews Molecular Cell Biology, Vol. 7, No. 8, 2006, pp. 589-600. doi:10.1038/nrm1983
[19] M. Skavdahl, C. Steenbergen, J. Clark, P. Myers, T. Demianenko, L. Mao, H. A. Rockman, K. S. Korach and E. Murphy, “Estrogen Receptor-β Mediates Male-Female Differences in the Development of Pressure Overload Hypertrophy,” American Journal of Physiology: Heart and Circulatory Physiology, Vol. 288, No. 2, 2004, pp. H469-H476. doi:10.1152/ajpheart.00723.2004
[20] F. A. Babiker, D. Lips, R. Meyer, E. Delvaux, P. Zandberg, B. Janssen, G. van Eys, C. Grohé and P. A. Doevendans, “Estrogen Receptor β Protects the Murine Heart Against Left Ventricular Hypertrophy,” Arteriosclerosis Thrombosis and Vascular Biology, Vol. 26, No. 7, 2006, pp. 1524-1530. doi:10.1161/01.ATV.0000223344.11128.23
[21] A. Pedram, M. Razandi, M. Aitkenhead and E. R. Levin, “Estrogen Inhibits Cardiomyocyte Hypertrophy in Vitro: Antagonism of Calcineurin-Related Hypertrophy through Induction of MCIP1,” Journal of Biological Chemistry, Vol. 280, No. 28, 2005, pp. 26339-26348. doi:10.1074/jbc.M414409200
[22] A. Pedram, M. Razandi, D. Lubahn, J. Liu, M. Vannan and E. R. Levin, “Estrogen Inhibits Cardiac Hypertrophy: Role of Estrogen Receptor-β to Inhibit Calcineurin,” Endocrinology, Vol. 149, No. 7, 2008, pp. 3361-3369. doi:10.1210/en.2008-0133
[23] M. van Eickels, C. Grohé, J. P. M. Cleutjens, B. J. Janssen, H. J. J. Wellens and P. A. Doevendans, “17β-Estradiol Attenuates the Development of Pressure-Overload Hypertrophy,” Circulation, Vol. 104, No. 12, 2001, pp. 1419-1423. doi:10.1161/hc3601.095577
[24] M. Jankowski, G. Rachelska, W. Donghao, S. M. Mc-Cann and J. Gutkowska, “Estrogen Receptors Activate Atrial Natriuretic Peptide in the Rat Heart,” Proceedings of the National Academy of Sciences USA, Vol. 98, No. 20, 2001, pp. 11765-11770. doi:10.1073/pnas.201394198
[25] S. Nuedling, S. Kahlert, K. Loebbert, P. A. Doevendans, R. Meyer, H. Vetter and C. Grohé, “17 Beta-Estradiol Stimulates Expression of Endothelial and Inducible NO Synthase in Rat Myocardium In-Vitro and In-Vivo,” Cardiovascular Research, Vol. 43, No. 3, 1999, pp. 666-674. doi:10.1016/S0008-6363(99)00093-0
[26] M. S. Bhuiyan, N. Shioda and K. Fukunaga, “Ovariectomy Augments Pressure Overload-Induced Hypertrophy Associated with Changes in Akt and Nitric Oxide Synthase Signaling Pathways in Female Rats,” American Journal of Physiology: Endocrinology and Metabolism, Vol. 293, No. 6, 2007, pp. E1606-E1614. doi:10.1152/ajpendo.00246.2007
[27] X. Loyer, T. Damy, Z. Chvojkova, E. Robidel, F. Marotte, P. Oliviero, C. Heymes and J. L. Samuel, “17β-Estradiol Regulates Constitutive Nitric Oxide Synthase Expression Differentially in the Myocardium in Response to Pressure Overload,” Endocrinology, Vol. 148, No. 10, 2007, pp. 4579-4584. doi:10.1210/en.2007-0228
[28] R. D. Patten, I. Pourati, M. J. Aronovitz, A. Alsheikh-Ali, S. Eder, T. Force, M. E. Mendelsohn and R. H. Karas, “17 Beta-Estradiol Differentially Affects Left Ventricular and Cardiomyocyte Hypertrophy Following Myocardial Infarction and Pressure Overload,” Journal of Cardiac Failure, Vol. 14, No. 3, 2008, pp. 245-253. doi:10.1016/j.cardfail.2007.10.024
[29] H. Witt, C. Schubert, J. Jaekel, D. Fliegner, A. Penkalla, K. Tiemann, J. Stypmann, S. Roepcke, S. Brokat, S. Mahmoodzadeh, E. Brozova, M. M. Davidson, P. Ruiz Noppinger, C. Grohé and V. Regitz-Zagrosek, “Sex-Specific Pathways in Early Cardiac Response to Pressure Overload in Mice,” Journal of Molecular Medicine, Vol. 86, No. 9, 2008, pp. 1013-1024. doi:10.1007/s00109-008-0385-4
[30] X.-M. Li, Y.-T. Ma, Y.-N. Yang, F. Liu, B.-D. Chen, W. Han, J.-F. Zhang and X.-M. Gao, “Downregulation of Survival Signalling Pathways and Increased Apoptosis in the Transition of Pressure Overload-Induced Cardiac Hypertrophy to Heart Failure,” Clinical and Experimental Pharmacology and Physiology, Vol. 36, No. 11, 2009, pp. 1054-1061. doi:10.1111/j.1440-1681.2009.05243.x
[31] T. D. O’Connell, S. Ishizaka, A. Nakamura, P. M. Swigart, M. C. Rodrigo, G. L. Simpson, S. Cotecchia, D. G. Rokosh, W. Grossman, E. Foster and P. C. Simpson, “The α1A/C- and α1B-Adrenergic Receptors Are Required for Physiological Cardiac Hypertrophy in the Double-Knockout Mouse,” Journal of Clinical Investigation, Vol. 111, No. 11, 2003, pp. 1783-1791. doi:10.1172/JCI16100
[32] F. S. Gragasin, Y. Xu, I. A. Arenas, N. Kainth and S. T. Davidge, “Estrogen Reduces Angiotensin II-Induced Nitric Oxide Synthase and NAD(P)H Oxidase Expression in Endothelial Cells,” Arteriosclerosis Thrombosis and Vascular Biology, Vol. 23, No. 1, 2002, pp. 38-44. doi:10.1161/01.ATV.0000047868.93732.B7
[33] J. D. Molkentin, J. R. Lu, C. L. Antos, B. Markham, J. Richardson, J. Robbins, S. R. Grant and E. N. Olson, “Acalcineurin-Ependent Transcriptional Pathway for Cardiac Hypertrophy,” Cell, Vol. 93, No. 2, 1998, pp. 215-228. doi:10.1016/S0092-8674(00)81573-1
[34] R. Passier, H. Zeng, N. Frey, F. J. Naya, R. L. Nicol, T. A. McKinsey, P. Overbeek, J. A. Richardson, S. R. Grant and E. N. Olson, “CaM kinas Signaling Induces Cardiac Hypertrophy and Activates the MEF2 Transcription Factor in Vivo,” Journal of Clinical Investigation, Vol. 105, No. 10, 2000, pp. 1395-1406. doi:10.1172/JCI8551
[35] S. D. Rybalkin, C. Yan, K. E. Bornfeldt and J. A. Beavo, “Cyclic GMP Phosphodiesterases and Regulation of Smooth Muscle Function,” Circulation Research, Vol. 93, No. 4, 2003, pp. 280-291. doi:10.1161/01.RES.0000087541.15600.2B

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.