Quantification of Phases in Lahore (Pakistan) Airborne Particulates by Matrix-Flushing Method

Abstract

The mass concentrations of eighteen airborne samples collected from Lahore (Pakistan) are found in the range from 595 to 3027μg/m3with average value of 1130 μg/m3. Most of these values are normal and as reported in the literature for other parts of the world. The major phases identified in the samples by the X-ray powder diffraction technique are Albite (Anorthite), Calcite, Clinochlore (Chlorite), Gypsum, Illite, Quartz and Talc which have also been reported by other researchers to be present in the airborne particulates of other world locations. The average weight percentages of the phases (minerals) in the samples are respectively 15.5, 10.6, 23.7, 2.4, 19.1, 20.2, and 8.5. Some of the elements (e.g., boron, cadmium, lithium, manganese, titanium, and zinc) quantified in two samples determined using a spark-source mass spectrometer appear also to derive their origin from man-made activities. However no compound synthesized in the atmosphere is detected by the X-ray diffraction method.

Share and Cite:

N. Ahmad, K. Hussain and S. Naseem, "Quantification of Phases in Lahore (Pakistan) Airborne Particulates by Matrix-Flushing Method," Journal of Minerals and Materials Characterization and Engineering, Vol. 1 No. 4, 2013, pp. 168-183. doi: 10.4236/jmmce.2013.14028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Roberts and J. Hallett, “A Laboratory Study of the Ice Nucleating Properties of Some Mineral Particulates,” Quarterly Journal of the Royal Meteorological Society, Vol. 94, No. 399, 1968, pp. 25-34. doi:10.1002/qj.49709439904
[2] K. Hussain, R. Riffat, A. Shaukat and M. A. Siddiqui, “A Study of Suspended Particulate Matter in Lahore (Pakistan),” Advances in Atmospheric Science, Vol. 7, No. 2, 1990, pp. 178-185.
doi:10.1007/BF02919155
[3] B. L. Davis and N. K. Cho, “Theory and Application of X-Ray Diffraction Compound Analysis to Hi-Volume Filter Samples,” Atmospheric Environment, Vol. 11, No. 1, 1977, pp. 73-85.
doi:10.1016/0004-6981(77)90209-8
[4] P. D. E. Biggins and R. M. Harrison, “Atmospheric Chemistry of Automotive Lead,” Environmental Science and Technology, Vol. 13, No. 5, 1979, pp. 558-565. doi:10.1021/es60153a017
[5] P. D. E. Biggins and R. M. Harrison, “Characterization and Classification of Atmospheric Sulfates,” Journal of Air Pollution Control Association, Vol. 29, No. 8, 1979, pp. 838-840.
doi:10.1080/00022470.1979.10470871
[6] R. L. Foster and P. F. Lott, “X-Ray Diffractometry Examination or Air Filters for Compounds Emitted by Leads Melting Operations,” Environmental Science and Technology, Vol. 14, No. 10, 1980, pp. 1240-1244. doi:10.1021/es60170a009
[7] B. H. O’Connor and J. M. Jaklevic, “Characterization of Ambient Aerosol Particulate Samples from the St. Louis-aera by X-Ray Powder Diffractometry,” Atmospheric Environment, Vol. 15, No. 9, 1981, pp. 1681-1690. doi:10.1016/0004-6981(81)90154-2
[8] T. Fukasawa, M. Iwasuki and S. P. Tillekeratne, “X-Ray Diffraction Analysis or Airborne Particulates Collected by an Andersen Sampler. Compound Distribution vs. Particle Size,” Environmental Science and Technology, Vol. 17, No. 10, 1983, pp. 596-602. doi:10.1021/es00116a007
[9] B. Tani, S. Siegel, S. A. Johnson and R. Kumar, “X-Ray Diffraction Investigation of Atmospheric Aerosols in the 0.3 - 1.0 μm Aerodynamic Size Range,” Atmospheric Environment, Vol. 17, No. 11, 1983, pp. 2277-2283. doi:10.1016/0004-6981(83)90226-3
[10] R. M. Harrison and W. T. Sturges, “Physico-Chemical Speciation and Transformation Reactions of Particulate Atmospheric Nitrogen and Sulphur Compounds,” Atmospheric Environment, Vol. 18, No. 9, 1984, pp. 1829-1833. doi:10.1016/0004-6981(84)90358-5
[11] M. Iwatsuki, S. P. Tillekeratne and T. Fukasawa, “X-Ray Analysis of Airborne Particulates Collected by an Andersen Sampler, Compound and Elemental Distributions vs Particle Size of Laboratory Particulates,” Environmental Science and Technology, Vol. 18, No. 11, 1984, pp. 818-822.
doi:10.1021/es00129a003
[12] G. Clarke and G. N. Karani, “Characterizations of the Carbonate Content of Atmospheric Aerosols,” Journal of Atmospheric Chemistry, Vol. 14, No. 1-4, 1992, pp. 119-128. doi:10.1007/BF00115228
[13] V. Esteve, A. Justo and J. M. Amigó, “X-Ray Diffraction Analysis of Airborne Particulates Collected by a Cascade Impactor Sampler Phases Distribution versus Particle Size,” Materials Science Forum, Vol. 166-169, 1994, pp. 705-710. doi:10.4028/www.scientific.net/MSF.166-169.705
[14] S. L. Lu, Q. X. Luan, Z. Jiao, M. H. Wu, Z. Li, L. Y. Shao and F. S. Wang, “Mineralogy of Inhalable Particulate Matter (pm10) in the Atmosphere of Beijing, China,” Water, Air & Soil Pollution, Vol. 186, No. 1-4, 2007, pp. 129-137. doi:10.1007/s11270-007-9470-5
[15] F. H. Chung, “Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures I. Matrix-Flushing Method for Quantitative Multicomponent Analysis,” Journal of Applied Crystallography, Vol. 7, 1974, pp. 519-525. doi:10.1107/S0021889874010375
[16] F. H. Chung, “Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures II. Adiabatic Principle of X-Ray Diffraction Analysis of Mixtures,” Journal of Applied Crystallography Vol. 7, 1974, pp. 526-531. doi:10.1107/S0021889874010387
[17] F. H. Chung, “Quantitative Interpretation of X-Ray Dif- fraction Patterns of Mixtures III. Simultaneous Determination of a Set of Reference Intensities,” Journal of Applied Crystallography, Vol. 8, 1975, pp. 17-19. doi:10.1107/S0021889875009454
[18] P. O. Warner, L. Saad and J. O. Jackson, “Identification and Quantitative Analysis of Particulate Air Contami- nants by X-Ray Diffraction Spectrometry,” Journal of Air Pollution Control Association, Vol. 22, No. 11, 1972, pp. 887-890. doi:10.1080/00022470.1972.10469727
[19] B. L. Davis, “Additional Suggestions for X-Ray Quanti- tative Analysis of High-Volume Filter Samples,” Atmospheric Environment, Vol. 12, No. 12, 1978, pp. 2403- 2406.
doi:10.1016/0004-6981(78)90283-4
[20] B. L. Davis, “Standardless X-Ray Diffraction Quantitative Analysis,” Atmospheric Environment, Vol. 14, No. 2, 1980, pp. 217-220. doi:10.1016/0004-6981(80)90280-2
[21] B. L. Davis, “A Study of the Errors in X-Ray Quantitative Analysis Procedures for Aerosols Collected on Filter Media,” Atmospheric Environment, Vol. 15, No. 3, 1981, pp. 291-296.
doi:10.1016/0004-6981(81)90030-5
[22] B. L. Davis and L. R. Johnson, “On the Use of Various Filter Substrates for Quantitative Particulate Analysis of X-Ray Diffraction,” Atmospheric Environment, Vol. 16, No. 2, 1982, pp. 273-282.
doi:10.1016/0004-6981(82)90443-7
[23] B. L. Davis, “X-Ray Diffraction Analysis and Source Apportionment of Denver Aerosol,” Atmospheric Environment, Vol. 18, No. 10, 1984, pp. 2197-2208. doi:10.1016/0004-6981(84)90207-5
[24] B. L. Davis and D. K. Smith, “Tables of Experimental Reference Intensity Ratios,” Powder Diffraction, Vol. 3, No. 4, 1988, pp. 205-208. doi:10.1017/S088571560001349X
[25] J. Rius, F. Plana and A. Palanques, “A Standardless X-Ray Diffraction Method for the Quantitative Analysis of Multiphase Mixtures,” Journal of Applied Crystallography, Vol. 20, 1987, pp. 457-460.
doi:10.1107/S0021889887086217
[26] T. Nakamura, “Quantitative Determination by X-Ray Diffractometry of Calcium Sulfate and Calcium Carbonate in Airborne Dusts,” Powder Diffraction, Vol. 3, No. 2, 1988, pp. 86-90.
doi:10.1017/S0885715600013294
[27] B. L. Davis, “Semi-Quantitative X-Ray Diffraction Analysis of Size Fractionated Atmospheric Particles,” Atmospheric Environment, Vol. 23, No. 10, 1989, pp. 2329-2332. doi:10.1016/0004-6981(89)90196-0
[28] B. L. Davis, D. K. Smith and M. A. Holomany, “Tables of Experimental Reference Intensity Ratios Table no. 2,” Powder Diffraction, Vol. 4, 1989, pp. 201-205. doi:10.1017/S0885715600013725
[29] W. T. Sturges, R. M. Harrison and L. A. Barrie, “Semi-Quantitative X-Ray Diffraction Analysis of Size Fractionated Atmospheric Particles,” Atmospheric Environment, Vol. 23, No. 5, 1989, pp. 1083-1098.
doi:10.1016/0004-6981(89)90309-0
[30] B. L. Davis and M. N. Spilde, “Quantitative X-Ray Powder Diffraction Analysis Applied to Transmission Diffraction,” Journal of Applied Crystallography, Vol. 23, 1990, pp. 315-320.
doi:10.1107/S0021889890003879
[31] B. L. Davis, R. Kath and M. Spilde, “The Reference Intensity Ratio: Its Measurement and Significance,” Powder Diffraction, Vol. 5, No. 2, 1990, pp. 76-78. doi:10.1017/S0885715600015372
[32] D. L. Bish and J. E. Post, “Quantitative Mineralogical Analysis Using the Rietveld Full-Pattern Fitting Method,” American Mineralogist, Vol. 78, 1993, pp. 932-940.
[33] V. Esteve, J. Rius, L. E. Ochando and J. M. Amigo, “Quantitative X-Ray Diffraction Phase Analysis of Coarse Airborne Particulate Collected by Cascade Impactor Sampling,” Atmospheric Environment, Vol. 31, No. 23, 1997, pp. 3963-3967. doi:10.1016/S1352-2310(97)00257-4
[34] B. D. Cullity, “Elements of X-Ray Diffraction,” Addison-Wesley, London, 1978.
[35] S. Battaglia, “Quantitative X-Ray Diffraction Analysis on Thin Samples Deposited on Cellulose Membrane Filters,” X-Ray Spectroscopy, Vol. 14, No. 1, 1985, pp. 16-19.
doi:10.1002/xrs.1300140105
[36] D. R. Rowe, M. A. Nouth and K. H. Al-Dhowalla, “Indoor-Outdoor Relationship of Suspended Particulate Matter in Riyadh, Saudi Arabia,” Journal of the Air Pollution Control Association, Vol. 35, No. 1, 1985, pp. 24-26.
[37] The Powder Diffraction File, Joint Committee on Powder Diffraction Standards, 1980.
[38] J. A. Adedokun, W. O. Emofurieta and O. A. Adedeji, “Physical, Mineralogical and Chemical Properties of Harmattan Dust at Ile-Ife, Nigeria,” Theoretical and Applied Climatology, Vol. 40, No. 3, 1989, pp. 161-169. doi:10.1007/BF00866179
[39] T. Fukasawa, M. Iwatsuki and S. P. Tillekeratne, “X-Ray Diffraction Analysis of Airborne Particulates Collected by an Andersen Sampler: Compound Distribution vs. Particle Size,” Environmental Science and Technology, Vol. 17, No. 10, 1983, pp. 596-602. doi:10.1021/es00116a007
[40] M. Arslan and M. Boybay, “A Study on the Characterization of Dust Fall,” Atmospheric Environment, Vol. 24, No. 10, 1990, pp. 2667-2671. doi:10.1016/0960-1686(90)90146-E

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.