Evaluation of Morphological Effect on Thermal and Mechanical Performance of PS/PMMA/CdS Nanocomposite Systems

Abstract

In the present paper an effort has been made to investigate effect of dispersion of CdS nanoparticles on the thermal and mechanical properties of PS/PMMA blends. Samples have been prepared through dispersion of CdS nanoparticles (prepared separately) during solution casting blend fabrication processing. These nanocomposites samples are structurally characterized through Wide angle X-ray Scattering (WAXS) and Small Angle X-ray Scattering (SAXS) techniques. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out in lieu of surface morphological characterization. The measurements of glass transition temperature and stress-strain analyses have been performed through Dynamic Mechanical Analyzer (DMA). The thermal conductivity of nanocomposite samples has been determined using Hot Disk Thermal Constants Analyzer. The study shows that the incorporation of dispersed CdS nanoparticles in PS/PMMA blend matrix significantly alter their glass transition behaviour, thermal conductivity and tensile properties.

Share and Cite:

Mathur, V. and Sharma, K. (2013) Evaluation of Morphological Effect on Thermal and Mechanical Performance of PS/PMMA/CdS Nanocomposite Systems. Advances in Nanoparticles, 2, 205-216. doi: 10.4236/anp.2013.23029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. V. Ginzburg, F. Qiu, M. Paniconi, G. Peng, D. Jasnow and A. C. Balazs, “Simulation of Hard Particles in a Phase-Separating Binary Mixture,” Physical Review Letters, Vol. 82, No. 20, 1999, pp. 4026-4029. doi:10.1103/PhysRevLett.82.4026
[2] Y. Tang and T. J. Ma, “Controlling Structural Organization of Binary Phase-Separating Fluids through Mobile Particles,” Chemical Physics, Vol. 116, No. 17, 2002, pp. 7719-7723.
[3] M. Laradji and G. J. MacNevin, “Phase Separation Dynamics in Binary Fluids Containing Quenched or Mobile Filler Particles,” Chemical Physics, Vol. 119, No. 4, 2003, pp. 2275-2283.
[4] H. Tanaka, A. J. Lovinger and D. D. Davis, “Pattern Evolution Caused by Dynamic Coupling between Wetting and Phase Separation in Binary Liquid Mixture Containing Glass Particles,” Physical Review Letters, Vol. 72, No. 16, 1994, pp. 2581-2584. doi:10.1103/PhysRevLett.72.2581
[5] C. Minelli, I. Geissbuehler, R. Eckert, H. Vogel, H. Heinzelmann and M. Liley, “Organization of Nanoscale Objects via Polymer Dimixing,” Colloid and Polymer Science, Vol. 282, No. 11, 2004, pp. 1274-1278. doi:10.1007/s00396-004-1070-y
[6] H. J. Chung, A. Taubert, R. D. Deshmukh and R. J. Composto, “Mobile Nanoparticles and Their Effect on Phase Separation Dynamics in Thin-Film Polymer Blends,” Europhysics Letters, Vol. 68, No. 2, 2004, p. 219. doi:10.1209/epl/i2004-10242-2
[7] J. Bashnagel and K. Binder, “On the Influence of Hard Walls on Structural Properties in Polymer Glass Simulation,” Macromolecules, Vol. 28, No. 20, 1995, pp. 6808-6818. doi:10.1021/ma00124a016
[8] J. Kraus, P. Müller-Buschbaum, T. Kuhlmann, D. W. Schubert and M. Stamm, “Confinement Effects on the Chain Conformation in Thin Polymer Films,” Europhysics Letters, Vol. 49, No. 2, 2000, p. 210. doi:10.1209/epl/i2000-00135-4
[9] M. Vacatello, “Monte Carlo Simulations of Polymer Melts Filled with Solid Nanoparticles,” Macromolecules, Vol. 34, No. 6, 2001, pp. 1946-1952.
[10] L. Wang, Y. S. Liu, X. Jiang, D. H. Qin and Y. Cao, “Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells,” Journal of Physical Chemistry C, Vol. 111, No. 26, 2007, pp. 9538-9542. doi:10.1021/jp0715777
[11] S. Kundu and H. Liang, “Photochemical Synthesis of Electrically Conductive CdS Nanowires on DNA Scaffolds,” Advanced Materials, Vol. 20, No. 4, 2008, PP. 826-831. doi:10.1002/adma.200702162
[12] Y. J. Hsu, S. Y. Lu and Y. F. Lin, “Formation of Polycyanoacrylate-Silica Nanocomposites by Chemical Vapor Deposition of Cyanoacrylates on Aerogels,” Chemistry of Materials, Vol. 20, No. 9, 2008, pp. 2854-2856. doi:10.1021/cm7030703
[13] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu and L. Wang, “Fabrication and Light-Transmission Properties of Monolayer Square Symmetric Colloidal Crystals via Controlled Convective Self-assembly on 1D Grooves,” Advanced Materials, Vol. 20, No. 1, 2008, pp. 123-128. doi:10.1002/adma.200701175
[14] J. C. Lee, W. Lee, S. H. Han, T. G. Kim and Y. M. Sung, “Synthesis of Hybrid Solar Cells Using CdS Nanowire Array Grown on Conductive Glass Substrates,” Electrochemistry Communications, Vol. 11, No. 1, 2009, pp. 231-234. doi:10.1016/j.elecom.2008.11.021
[15] C. Li, J. Zhu, Q. Li, S. Chen and Y. R. Wang, “Controllable Synthesis of Functionalized CdS Nanocrystals and CdS/PMMA Nanocomposite Hybrids,” European Polymer Journal, Vol. 43, No. 11, 2007, pp. 4593-4601. doi:10.1016/j.eurpolymj.2007.08.008
[16] M. Z. Rong, M. Q. Zhang, H. C. Liang and H. M. Zeng, “Surface Modification and Particles Size Distribution Control in Nano-CdS/Polystyrene Composite Film,” Chemical Physics, Vol. 286, No. 2-3, 2003, pp. 267-276. doi:10.1016/S0301-0104(02)00928-X
[17] J. H. Zeng, J. Yang, Y. Zhu, Y. F. Liu, Y. T. Qian and H. G. Zheng, “Nanocomposite of CdS Particles in Polymer Rodsfabricated by a Novel Hydrothermal Polymerization and Simultaneous Sulfidation Technique,” Chemical Com munications, 2001, pp. 1332-1333.
[18] D. Schlemmer, E. R. de Oliveira and M. J. Araújo Sales, “Polystyrene/Thermoplastic Starch Blends with Different Plasticizers,” Journal of Thermal Analysis and Calorimetry, Vol. 87, No. 3, 2007, pp. 635-638.
[19] J. K. Chen, S. W. Kuo, H. C. Kao and F. C. Chang, “Ther mal Properties, Specific Interactions, and Surface Energies of PMMA Terpolymers Having High Glass Transition Temperatures and Low Moisture Absorptions,” Polymer, Vol. 46, No. 7, 2005, pp. 2354-2364. doi:10.1016/j.polymer.2005.01.046
[20] K. S. Rathore, D. Patidar, Y. Janu, N. S. Saxena, K. B. Sharma and T. P. Sharma, “Structural and Optical Characterization of Chemically Synthesized ZnS Nanoparticles,” Chalcogenide Letters, Vol. 5, No. 6, 2008, pp. 105 110.
[21] S. Gupta, D. Patidar, N. S. Saxena, K. B. Sharma and T. P. Sharma, “Electrical Study of Cu-CdS and Zn-CdS Schottky Junction,” Advanced Materials, Vol. 2, No. 4, 2008, pp. 205.
[22] M. Dixit, S. Gupta, V. Mathur, K. S. Rathore, K. Sharma and N. S. Saxena, “Study of Glass Transition Temperature of PMMA and CdS-PMMA Composite,” Chalcogenide Letters, Vol. 6, No. 3, 2009, pp. 131-136.
[23] S. E. Gustafsson, “Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials,” Review of Scientific Instruments, Vol. 62, No. 3, 1991, p. 797.
[24] K. Menard, “Dynamic Mechanical Analysis, A Practical Introduction,” 1999.
[25] S. W. Choi, J. H. Yoon, M. J. An, W. S. Chae, H. M. Cho, M. G. Choi and Y. R. Kim. “Organic Nanotube Induced by Photocorrosion of CdS Nanorod,” Bulletin of Korean Chemical Society, Vol. 25, No. 7, 2004, pp. 983-985.
[26] X. F. Lu, H. Mao, W. J. Zhang and C. Wang, “Synthesis and Characterization of CdS Nanoparticles in Polystyrene Microfibers,” Materials Letters, Vol. 61, No. 11-12, 2007, pp. 2288-2291. doi:10.1016/j.matlet.2006.08.070
[27] B. J. Ash, L. S. Schadler and R. W. Siegel, “Glass Transition Behavior of Alumina/Polymethylmethacrylate Nanocomposites,” Materials Letters, Vol. 55, No. 1-2, 2002, pp. 83-87. doi:10.1016/S0167-577X(01)00626-7
[28] F. Mammeri, E. Le Bourhis, L. Rozesa and C. Sanchez, “Mechanical Properties of Hybrid Organic-Inorganic Materials,” Journal of Materials Chemistry, Vol. 15, No. 35-36, 2005, pp. 3787-3811. doi:10.1039/b507309j
[29] Z. Gao, W. Xie, J. M. Hwu, L. Wells and W.-P. Pan, “The Characterization of Organic Modified Montmorillonite and Its Filled PMMA Nanocomposite,” Journal of Thermal Analysis and Calorimetry, Vol. 64, 2001, pp. 467-475. doi:10.1023/A:1011514110413
[30] A. P. Whittington, S. T. Nguyen and J.-H. Kim, “Thermal Behavior of Polystyrene-Silica Nanocomposites,” Nanoscape, Vol. 6, No. 1, 2009, pp. 26-29.
[31] Q. Zhao and E. T. Samulski, “A Comparative Study of Poly(methyl methacrylate) and Polystyrene/Clay Nanocomposites Prepared in Supercritical Carbon Dioxide,” Polymer, Vol. 47, No. 2, 2006, pp. 663-671. doi:10.1016/j.polymer.2005.11.079

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.