Share This Article:

Dynamics Behaviors of a Laser Produced Plasma: Theoretical Approach

Abstract Full-Text HTML Download Download as PDF (Size:1463KB) PP. 1013-1021
DOI: 10.4236/jmp.2013.47136    2,658 Downloads   3,939 Views   Citations

ABSTRACT

Assuming that plasma particles are moving on continuous and non-differentiable curves, some dynamic properties in plasma ablation are analyzed via scale-relativity theory: the splitting of plasma plume, multi-peak structures, at various distances from the target surface and plasma oscillations through self-similarity. Our theoretical results are in good agreement with the experimental ones.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Manea, C. Nejneru, D. Mătăsaru, C. Axinte and M. Agop, "Dynamics Behaviors of a Laser Produced Plasma: Theoretical Approach," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 1013-1021. doi: 10.4236/jmp.2013.47136.

References

[1] C. R. Phipps, Ed., “Laser Ablation and Its Applications,” Springer, New York, 2006.
[2] L. J. Radziemski and D. A. Cramers, “Laser Induced Plasma and Applications,” Dekker, New York, 1989.
[3] A. Peterlongo, A. Miotello and R. Kelly, Physical Review E, Vol. 50, 1994, pp. 4716-4727. doi:10.1103/PhysRevE.50.4716
[4] R. Jordan and J. G. Lunney, Applied Surface Science, Vol. 215, 1998, pp. 127-129. doi:10.1016/S0169-4332(97)00775-7
[5] S. Gurlui, M. Agop, P. Nica, M. Ziskind and C. Focsa, Physical Review E, Vol. 78, 2008, Article ID: 026405. doi:10.1103/PhysRevE.78.026405
[6] C. Ursu, O. G. Pompilian, S. Gurlui, P. Nica, M. Agop, M. Dudeck and C. Focsa, Applied Physics A, Vol. 15, No. 28, 2010.
[7] M. Murakami, Y. G. Kang, K. Nishihara and H. Nishimura, Physics of Plasmas, Vol. 12, 2005, Article ID: 062706. doi:10.1063/1.1928247
[8] P. Mora, Physical Review Letters, Vol. 90, 2003, Article ID: 185002. doi:10.1103/PhysRevLett.90.185002
[9] N. M. Bulgakova, A. V. Bulgakov and O. F. Bobrenok, Physical Review E, Vol. 62, 2000, pp. 5624-5635. doi:10.1103/PhysRevE.62.5624
[10] L. Nottale, “Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity,” World Scientific, Singapore, 1993. doi:10.1142/1579
[11] L. Nottale, “Scale Relativity and Fractal Space-Time—A New Approach to Unifying Relativity and Quantum Mechanics,” Imperial College Press, London, 2011.
[12] L. Nottale, International Journal of Modern Physics A, Vol. 4, 1989, pp. 5047-5117. doi:10.1142/S0217751X89002156
[13] M. S. El Naschie, O. E. Rossler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals,” Elsevier, Oxford, 1995.
[14] P. Weibel, G. Ord and O. E. Rosler, “Space Time Physics and Fractility,” Springer, New York, 2005. doi:10.1007/3-211-37848-0
[15] M. Agop, N. Forna, I. Casian-Botez and C. Bejenariu, Journal of Computational and Theoretical Nanoscience, Vol. 5, 2008, pp. 483-489.
[16] I. Casian-Botez, M. Agop, P. Nica, V. Paun and G. V. Munceleanu, Journal of Computational and Theoretical Nanoscience, Vol. 7, 2010, pp. 2271-2280. doi:10.1166/jctn.2010.1608
[17] G. V. Munceleanu, V. P. Paun, I. Casian-Botez and M. Agop, International Journal of Bifurcation and Chaos, Vol. 21, 2011, pp. 603-618. doi:10.1142/S021812741102888X
[18] B. Mandelbrot, “The Fractal Geometry of Nature,” W. H. Freeman, New York, 1983.
[19] M. Agop, P. Nica, O. Niculescu and D.-G. Dumitru, Journal of the Physical Society of Japan, Vol. 81, 2012, Article ID: 064502. doi:10.1143/JPSJ.81.064502
[20] O. C. Zinkiewikz, R. L. Taylor and J. Z. Zhu, “The Finite Element Method: Its Basis and Fundamentals,” 6th Edition, Elsevier, Butterworth-Heinemann, 2005.
[21] P. Nica, M. Agop, S. Gurlui, C. Bejinariu and C. Focsa, Japanese Journal of Applied Physics, Vol. 51, 2012, Article ID: 106102. doi:10.1143/JJAP.51.106102
[22] P. Nica, M. Agop, S. Gurlui and C. Focsa, Europhysics Letters, Vol. 89, 2010, Article ID: 65001. doi:10.1209/0295-5075/89/65001
[23] P. Nica, M. Agop, S. Miyamoto, S. Amano, A. Nagano, T. Inoue, E. Poll and T. Mochizuki, European Physical Journal D, Vol. 60, 2010, pp. 317-323. doi:10.1140/epjd/e2010-00217-2
[24] P. Nica, S. Miyamoto, S. Amano, T. Inoue, A. Shimoura and T. Mochizuki, Physics Letters A, Vol. 370, 2007, pp. 154-157. doi:10.1016/j.physleta.2007.05.105
[25] B. D. Coleman, E. H. Dill, M. Lembo, Z. Lu and I. Tobias, Archive for Rational Mechanics and Analysis, Vol. 121, 1993, pp. 339-359. doi:10.1007/BF00375625
[26] B. Audoly and S. Neukirch, Physical Review Letters, Vol. 95, 2005, Article ID: 095505. doi:10.1103/PhysRevLett.95.095505

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.