Share This Article:

Protective Effects of Many Citrus Flavonoids on Cartilage Degradation Process

Abstract Full-Text HTML Download Download as PDF (Size:422KB) PP. 279-283
DOI: 10.4236/jbnb.2013.43035    3,841 Downloads   5,025 Views   Citations

ABSTRACT

The objective of this study was to investigate the effects of many citrus flavanones, such as neoeriocitrin, naringin and neohesperidin, in cartilage degradation. Degenerative joint disease involved degradation of joints, including articular cartilage and subchondral bone. When bone surfaces become less well protected by cartilage, bone may be exposed and damaged. The degradation cartilage is mediated by alteration of the balance between anabolic and catabolic processes, changes in proteolytic enzyme activity, mechanical disruption of the cartilage extracellular matrix (ECM), or a combination of these processes. We examine the capability of neoeriocitrin, naringin and neohesperidin, to inhibit metalloproteinase (MMP)-13, collagenase involved in degradation of cartilage matrix components. Also, we assay the flavonoids effect on reducing of Glycosaminoglycans (GAGs) release, and restore Nitric oxide (NO) levels in explant of human articular cartilage. Our results suggest that neoeriocitrin, naringin and neohesperidin are a potential therapeutic agent to protect cartilage tissue.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Crascì and A. Panico, "Protective Effects of Many Citrus Flavonoids on Cartilage Degradation Process," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3, 2013, pp. 279-283. doi: 10.4236/jbnb.2013.43035.

References

[1] F. Berenbaum, “Osteoarthritis as an Inflammatory Disease (Osteoarthritis Is Not Osteoarthrosis!),” Osteoarthritis and Cartilage, Vol. 2, No. 1, 2013, pp. 16-21. doi:10.1016/j.joca.2012.11.012
[2] Y. J. Moon, X. Wang and M. E. Morris, “Dietary Flavonoids: Effects on Xenobiotic and Carcinogen Metabolism,” Toxicology in Vitro, Vol. 20, No. 2, 2006, pp. 187-210. doi:10.1016/j.tiv.2005.06.048
[3] A. García-Lafuente, E. Guillamón, A. Villares, M. A. Rostagno and J. A. Martínez, “Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease,” Inflammation Research, Vol. 58, No. 9, 2009, pp. 537-552. doi:10.1007/s00011-009-0037-3
[4] G. Mandalari, M. Bennet, A. R. Kirby, R. B. Lo Curto, G. Bisignano, K. W. Waldron and C. B. Faulds, “Enzymatic Hydrolysis of Flavonoids and Pectic Oligosaccharides from Bergamot (Citrus Bergamia Risso) Pee,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 21, 2006, pp. 8307-8313. doi:10.1021/jf0615799
[5] L. Di Donna, G. De Luca, F. Mazzotti, A. Napoli, R. Salerno, D. Taverna and G. Sindona, “Statin-Like Principles of Bergamot Fruit (Citrus Bergamia): Isolation of 3-Hydroxymethylglutaryl Flavonoid Glycosides,” Journal Natural Products, Vol. 72, No. 7, 2009, pp. 1352-1354. doi:10.1021/np900096w
[6] A. C. E. Graziano, V. Cardile, L. Crascì, S. Caggi, P. Dugo, F. Bonina and A. Panico, “Protective Effects of an Extract from Citrus Bergamia against Inflammatory Injury in Interferon-γ and Histamine Exposed Human Keratinocytes,” Life Sciences, Vol. 27, No. 90, 2012, pp. 968-974. doi:10.1016/j.lfs.2012.04.043
[7] P.S. Burrage and C.E. Brinckerhoff, “Molecular Targets in Osteoarthritis: Metalloproteinases and Their Inhibitors,” Current Drug Targets, Vol. 8, No. 2, 2007, pp. 293-303. doi:10.2174/138945007779940098
[8] H. Takaishi1, T. Kimura, S. Dalal, Y. Okada and J. D’Armiento, “Joint Diseases and Matrix Metalloproteinases: A Role for MMP-13,” Current Pharmaceutical Biotechnology, Vol. 9, No. 1, 2008, pp. 47-54. doi:10.2174/138920108783497659
[9] J. Y. Wang and M. H. Roehrln, “Glycosaminoglycans Are a Potential Cause of Rheumatoid Arthritis,” Proceeding of the National Academy of Sciences of the United States of America, Vol. 99, No. 22, 2002, pp. 14362-14367.
[10] A. Panico, R. Maccari, V. Cardile, L. Crascì, S. Ronsisvalle and R. Ottanà, “5-Arylidene-4-Thiazolidinone Derivatives Active as Antidegenerative Agents on Human Chondrocyte Cultures,” Medicinal Chemistry, Vol. 9, No. 1, 2013, pp. 84-90. doi:10.2174/157340613804488378
[11] K. E. Armour, R. J. Van’t Hof, P. S. Grabowski, D. M. Reid and S. H. Ralston, “Evidence for a Pathogenic Role of Nitric Oxide in Inflammation-Induced Osteoporosis,” Journal of Bone and Mineral Research, Vol. 14, No. 12, 1999, pp. 2137-2142. doi:10.1359/jbmr.1999.14.12.2137
[12] I. Bertini, V. Calderone, M. Fragai, A. Giachetti, M. Loconte, C. Luchinat, M. Maletta, C. Nativi and K. J. Yeo, “Exploring the Subtleties of Drug-Receptor Interactions: The Case of Matrix Metalloproteinases,” Journal of the American Chemical Society, Vol. 129, No. 9, 2007, pp. 2466-2475. doi:10.1021/ja065156z
[13] R. W. Farndale, C. A. Sayers and A. J. Barrett, “A Direct Spectrophotometric Microassay for Sulfated Glycosaminoglycans in Cartilage Cultures,” Connective Tissue Research, Vol. 9, No. 4, 1982, pp. 247-248. doi:10.3109/03008208209160269
[14] L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. Tannenbaum, “Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids,” Analytical Biochemistry, Vol. 126, No. 1, 1982, pp. 131-138. doi:10.1016/0003-2697(82)90118-X
[15] M. P. Vincenti, I. M. Clark and C. E. Brinckerhoff, “Using Inhibitors of Metalloproteinases to Treat Arthritis. Easier Said than Done?” Arthritis Rheumatoly, Vol. 37, No. 8, 1994, pp. 1115-1126. doi:10.1002/art.1780370802
[16] G. Murphy, V. Kna¨uper, S. Atkinson, G. Butler, W. English, M. Hutton, J. Stracke and I. Clark, “Matrix Metalloproteinases in Arthritic Disease,” Arthritis Research, Vol. 4, No. 3, 2002 pp. 39-49. doi:10.1186/ar572
[17] P. Vicini, L. Crascì, M. Incerti, S. Ronsisvalle, V. Cardile and A. M. Panico, “Benzisothiazolyliminothiazolidin-4Ones with Chondroprotective Properties: Searching for Potent and Selective Inhibitors of MMP-13,” ChemMedChem, Vol. 6, No. 7, 2011, pp. 1199-1202. doi:10.1002/cmdc.201100223
[18] T. Stipcevic, J. Piljac and D. Vanden Berghe, “Effect of Different Flavonoids on Collagen Synthesis in Human Fibroblasts,” Plant Foods for Human Nutrition, Vol. 61, No. 1, 2006, pp. 29-34. doi:10.1007/s11130-006-0006-8
[19] G. Kerckhofs, J. Sainz, M. Wevers, T. Van de Putte and J. Schrooten, “Contrast-Enhanced Nanofocus Computed Tomography Images the Cartilage Subtissue Architecture in Three Dimensions,” European Cells & Materials, Vol. 7, No. 25, 2013, pp. 179-189.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.