Share This Article:

The underground organ microbial complexes of moorland spotted orchid Dactylorhiza maculata (L.) Soó (Orchidaceae)

Abstract Full-Text HTML XML Download Download as PDF (Size:337KB) PP. 35-42
DOI: 10.4236/abb.2013.47A2005    3,108 Downloads   4,651 Views   Citations

ABSTRACT

This paper is focused on the first study of microbiota of a moderate climate orchid from Northern hemisphere—Moorland Spotted Orchid Dactylorhiza maculata (L.) Soó growing in its natural habitat. There have been obtained detailed data concerning bacterial communities from rhizosphere and inner tissues of young and old tubers. It was done using the biomarker analysis method where the markers were detected by gas chromatographymass-spectrometry. It is shown that the number of bacterial genera and the bacteria amount (105 - 108 CFU per gram of dry weight) in D. maculata microbial complexes decreases from rhizosphere to old tuber to young. At the same time all three bacterial cenoses closely resemble each other in biodiversity. Their constant members are gg. Hyphomicrobium, Methylococcus, Nitrobacter, Pseudomonas and Sphingomonas (Proteobacteria), Bacillus and Clostridium (Firmicutes), Rhodococcus and Streptomyces (Actinobacteria). There were found differences peculiar to the taxonomic structure of each microbial complex. The rhizosphere is dominated by Actinobacteria while in inner tissues Proteobacteria are prevalent. The bacteria of gg. Ochrobactrum, Xanthomonas, Butyrivibrio, Corynebacterium, Mycobacterium, Propionibacterium, Sphingobacterium and specific iron reducers were shown to belong to rhizosphere community. Genera of Agrobacterium and Bifidobacterium were found only in the endophytic microbiota of the young tuber while g. Aeromonas is

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Shekhovtsova, N. , Marakaev, O. , Pervushina, K. and Osipov, G. (2013) The underground organ microbial complexes of moorland spotted orchid Dactylorhiza maculata (L.) Soó (Orchidaceae). Advances in Bioscience and Biotechnology, 4, 35-42. doi: 10.4236/abb.2013.47A2005.

References

[1] Dressler, R.L. (1981) The orchids: Natural history and classification. Harvard University Press, Cambridge and London, 332.
[2] Bayman, P. and Otero, J.T. (2006) Microbial endophytes of orchid roots. Soil Biology, 9, 153-177. doi:10.1007/3-540-33526-9_9
[3] Smith, S.E. and Read, D.J. (2008) Mycorrhizal symbiosis. Elsevier, Amsterdam, 804.
[4] Hadley, G. (1982) Orchid mycorrhiza. In: Arditti, J., Ed., Orchid biology—Reviews and perspectives. Cornell Universtiy Press, Ithaca, 83-118.
[5] Rasmussen, H.N. (1995) Terrestrial orchids: From seed to mycotrophic plant. Cambridge University Press, Cambridge, 433.
[6] Wilkinson, K.G., Dixon, K.W. and Sivasithamparam, K. (1989) Interaction of soil bacteria, mycorrhizal fungi and orchid seeds in relation to germination of Australian orchids. New Phytologist, 112, 429-435. doi:10.1111/j.1469-8137.1989.tb00334.x
[7] Tsavkelova, E.A., Cherdyntseva, T.A, Botina, S.G. and Netrusov, A.I. (2004) Bacteria associated with the roots of epiphytic orchids. Mikrobiologiia, 73, 825-831.
[8] Tsavkelova, E.A, Cherdyntseva, T.A. and Netrusov, A.I. (2005) Auxin production by bacteria associated with orchid roots. Mikrobiologiia, 74, 55-62.
[9] Zambrano, E.R., Salgado, T.J. and Hernández, A.T. (2007) Estudio de bacterias asociadas orquídeas (Orchidaceae). Lankesteriana, 7, 322-325.
[10] Galdiano, J.R.F., Pedrinho, E.A.N., Castellane, T.C.L. and de Macedo Lemos, E.G. (2011) Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. Revista Brasileira de Ciência do Solo, 35, 83-92.
[11] Wu, Z.-Y., Fang, Y., Chen, X., Zhang, H.-L., Zhang, M.-Z. and Li B. (2010) Pathogen identification of bacterial soft rot in moth orchid in Zhejiang Province. Journal of Zhejiang Forestry College, 27, 635-639.
[12] Tsavkelova, E.A., Cherdyntseva, T.A. and Netrusov, A.I. (2007) Bacteria, associated orchid roots and microbial production of auxin. Microbiological Research, 162, 6976. doi:10.1016/j.micres.2006.07.014
[13] Osipov, G.A. and Turova, E.S. (1997) Studying species composition of microbial communities with the use of gas chromatography-mass spectrometry. Microbial community of kaolin. FEMS Microbiology Reviews, 2, 437-446. doi:10.1111/j.1574-6976.1997.tb00328.x
[14] Wilkinson, K.G., Dixon, K.W., Sivasithamparam, K. and Ghisalberti, E.L. (1994) Effect of IAA оn symbiotic germination of аn Australian orchid and its production bу orchid-associated bacteria. Plant Soil, 159, 291-295.
[15] Tsavkelova, E.A., Cherdyntseva, T.A., Klimova, S.Yu., Shestakov, A.I., Botina, S.G. and Netrusov, A.I. (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Archives of Microbiology, 188, 655-664.
[16] Shеkhovtsova, N.V., Pervushina, K.А., Маrakaev, О.А., Kholmogorov, S.V. and Osipov, G.А. (2010) Microorganisms associated with underground organs of central Russia Orchidaceae. Problemy Agrokhimii i Ekologii, 4, 30-36. doi:10.1007/s00203-007-0286-x
[17] Mineeva, T.I. and Voronina, E.Yu. (2011) Qualitative and numerical characteristics of some temperate orchid mycorrhizospheres. Proceedings of the 9th International Conference “Orchid Conservation and Cultivation”, SaintPetersburg, 26-30 September 2011, 300-305.
[18] Hofflich, G., Glante, F., Liste, H.H., Weise, J., Ruppel, S. and Schlozseidel, C. (1993) Phytoeffective combination effects of symbiotic and associative microorganisms оn Lеgumes. Symbiosis, 14, 427-438.
[19] Vakhrameeva, M.G., Tatarenko, I.V., Varlygina, T.I., Torosyan, G.K. and Zagulski, M.N. (2008) Orchids of Russia and adjacent countries (within the borders of the former USSR). A.R.G. Gantner Verlag K.G., Konigstein, 690.
[20] Magurran, A. (2004) Measuring biological diversity. Blackwell Publishing, Oxford, 215.
[21] Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Zh., Kuczmarski, D., Higley, Ph., Ishimaru, C.A., Arunakumari, A., Barletta, R.G. and Vidaver A.K. (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology, 68, 2198-2208. doi:10.1128/AEM.68.5.2198-2208.2002
[22] Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E.R.B., Taghavi, S., Mezgeay, M. and van der Lelie, D. (2010) Bacteria and their potential applications. Critical Reviews in Plant Sciences, 21, 583-606. doi:10.1080/0735-260291044377

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.