Share This Article:

Zygotic combinatorial process in plants

Abstract Full-Text HTML Download Download as PDF (Size:916KB) PP. 798-803
DOI: 10.4236/abb.2013.47104    2,902 Downloads   4,122 Views   Citations

ABSTRACT

Experimental data that prove the existence of the zygotic combinatorial process occurring in an embryogenesis-entering zygote are presented in the paper. The zygotic combinatorial process is found when analyzing F1 hybrid plants obtained from crossing homozygous forms different, minimum, in two marker enzymes, and it is found in that hybrid plant which, with one marker enzyme heterozygous spectrum, has a homozygous spectrum of the other. The zygotic combinatorial process leads to F1 hybrids uniformity aberration. The zygotic combinatory process revealed in the study is supposed to be conditioned by chromosome polyteny in mother plant cells and diminution of chromatin excess from the embryogenesisentering zygote. An obligatory condition for combinatorial process is the presence of free exchange of chromatides among homological chromosomes in an embryogenesis-entering cell, i.e. the presence of crossing-over analogous to the one proceeding at meiosis.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Levites, E. and Kirikovich, S. (2013) Zygotic combinatorial process in plants. Advances in Bioscience and Biotechnology, 4, 798-803. doi: 10.4236/abb.2013.47104.

References

[1] Mendel, G. (1866) Versuche uber pflanzen-hybriden. In: Verhandlungen des naturforschenden Vereines in Brünn (Abhandlungen), Im Verlage des Vereines, Brünn, 3-47.
[2] Gustafsson, A. (1946-1947) Apomixis in higher plants. I-III. Lunds Universitets Arsskrift, 42-43, 1-370.
[3] Maletskii, S.I., Sukhareva, N.B. and Baturin, S.O. (1994) Sex inheritance in apomictic seedlings of garden strawberry (Fragaria x ananassa Duch.). Russian Journal of Genetics, 30, 237-243. (In Russian)
[4] Levites, E.V., Shkutnik, T., Ovechkina, O.N. and Maletskii, S.I. (1998) Pseudosegregation in the agamospermic progeny of male sterile plants of the sugar beet (Beta vulgaris L.). Doklady Akademii Nauk, 362, 430-432. (In Russian)
[5] Levites, E.V. (2005) Sugarbeet plants produced by agamospermy as a model for studying genome structure and function in higher plants. Sugar Tech, 7, 67-70. doi:10.1007/BF02942532
[6] Levites, E.V. (2007) Marker enzyme phenotype ratios in agamospermous sugarbeet progenies as a demonstration of multidimensional encoding of inherited information in plants. http://arxiv.org/abs/q-bio/0701027
[7] Levites, E.V. (2010) Sugar beet as a model object in the investigation of plant inherited information coding. Encyclopaedia of genus Beta. Beet biology, genetics and breeding. Sova Publication, Novosibirsk. (In Russian)
[8] Tschermak-Woess, E. (1957) About the structure of the nucleus of endopoliploid antipodes of Clivia miniata. Chromosoma, 8, 637-649. doi:10.1007/BF01259524
[9] Hasitschka-Jenschke, G. (1959) Comparative karyological study of antipodes. Chromosoma, 10, 229-267. doi:10.1007/BF00396573
[10] Ivanovskaya, E.V. (1973) Functional embryology of wheat antipodes polytene chromosomes. Cytology, 15, 14451452. (In Russian)
[11] Nagl, W. (1981) Polytene chromosomes of plants. International Review of Cytology, 73, 21-53. doi:10.1016/S0074-7696(08)61285-1
[12] Carvalheira, G. (2000) Plant polytene chromosomes. Genetics and Molecular Biology, 23, 1043-1050. doi:10.1590/S1415-47572000000400050
[13] Levites, E.V. and Kirikovich, S.S. (2012) Post-meiotic apozygotic combinatory process in sugar beet (Beta vulgaris L.). Advances in Bioscience and Biotechnology, 3, 75-79. doi:10.4236/abb.2012.31011
[14] Schwartz, D. (1960) Genetic studies on mutant enzymes in maize. Synthesis of hybrid enzymes by heterozygotes. Proceedings of the National Academy of Sciences of the USA, 46, 1210-1215. doi:10.1073/pnas.46.9.1210
[15] Scandalios, J.G. (1969) Genetic control of multiple forms of enzymes in plants: A review. Biochemical Genetics, 3, 37-79. doi:10.1007/BF00485973
[16] Levites, E.V. (2012) Violation of the low of uniformity of the first generation of hybrids. Russian Journal of Genetics, 48, 1158-1161. doi:10.1134/S1022795412090062
[17] Meizel, S. and Markert, C.L. (1967) Malate dehydrogenase isozymes of the marine snail Ilyanassa obsoleta. Archives of Biochemistry and Biophysics, 122, 753-765. doi:10.1016/0003-9861(67)90185-3
[18] Levites, E.V. (1986) Genetics of plant isozymes. In: Isozymes in Plant Biology, Nauka Publication, Novosibirsk. (In Russian)
[19] Levites, E.V. (2002) Redetermination: An interesting epigenetic phenomenon associated with mitotic agamospermy in sugar beet. Sugar Tech, 4, 137-141. doi:10.1007/BF02942695
[20] Levites, E.V. and Kirikovich, S.S. (2003) Epigenetic variability of unlinked enzyme genes in agamospermous progeny of sugar beet. Sugar Tech, 5, 57-59. doi:10.1007/BF02943765
[21] Cattanach, B.M. and Kirk, M. (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature, 315, 496-498. doi:10.1038/315496a0
[22] Nicholls, R.D., Knoll, J.H., Butler, M.G., et al. (1989) Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature, 342, 281-285. doi:10.1038/342281a0
[23] Levites, E.V. and Kirikovich, S.S. (2011) Autosegregation of enzyme loci in agamospermous progenies of triploid plants of sugar beet (Beta vulgaris L.). Russian Journal of Genetics, 47, 836-841.
[24] Kojima, A. and Nagato, Y. (1992) Diplosporous embryosac formation and the degree of diplospory in Allium tuberosum. Sexual Plant Reproduction, 5, 72-78.
[25] Timofeev-Resovsky, N.V. (1925) About phenotypic manifestation of genotype. 1. Gene variations in radius incompletes of Drosophila funebris. Journal of Experimental Biology, Series A, 1, 93-142.
[26] Navashin, M. (1934) Chromosome alteration caused by hybridisation and their bearing upon certain general genetic problems. Cytologia, 5, 169-203. doi:10.1508/cytologia.5.169
[27] Matzk, F., Hammer, K. and Schubert, I. (2003) Coevolution of apomixis and genome size within the genus Hypericum. Sexual Plant Reproduction, 16, 51-58. doi:10.1007/s00497-003-0174-8
[28] Yudanova, S.S., Maketskaya, E.I. and Maletskii, S.I. (2004) Epiplastome variation of the number of chloroplasts in stomata guard cells of sugar beet (Beta vulgaris L.). Russian Journal of Genetics, 40, 930-939. doi:10.1023/B:RUGE.0000036525.14205.3f
[29] Evans, G.M. (1968) Nuclear changes in flax. Heredity, 23, 25-38. doi:10.1038/hdy.1968.2
[30] Nagl, W. (1973) Photoperiodic control of activity of the suspensor polytene chromosomes in Phaseolus vulgaris. Zeitschrift für Pflanzenphysiologie, 70, 350-357. doi:10.1016/S0044-328X(73)80101-1
[31] Durrant, A. and Timmis, J.N. (1973) Genetic control of environmentally induced changes in Linum. Heredity, 30, 369-379. doi:10.1038/hdy.1973.45
[32] Cullis, C.A. (1973) DNA differences between flax genotrophs. Nature, 243, 515-516. doi:10.1038/243515a0
[33] Zhimulev, I.F. (1992) Polytene chromosomes: Morphology and structure. Nauka Publication, Novosibirsk. (In Russian)
[34] Kirikovich, S.S. (2004) Epigenetic variability of enzyme loci in sugar beet (Beta vulgaris L.) under many-factor influences. Ph.D. Thesis, Institute of Cytology and Genetics, Novosibirsk, 129p. (In Russian)

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.