Behavior of Heavy Metals during the Agro-Industrial Wastes Gasification

Abstract

The characterization analysis of three agro-industrial wastes was performed in order to study its thermal gasification. Some analyses such as determination of Ca, K and Mg concentration and determination of three representative toxic metals concentration Cd, Cr and Pb in all its oxidation states and the fundamental state, were carried out. The heavy metals concentration was also determined in the ashes obtained during the gasification process. The mobility of these elements was studied through three leaching tests. The behavior of heavy metals, sulfur and chlorine compounds, was predicted considering the presence of water vapor, syngas, Ca, Mg, K, Si, Al and other ash components. The heavy metals are not more concentrated in the gasification ash; these pollutants are released during this process. Ca, Mg and K presence in these residues would promote the pollutants retention. The ash of the studied waste can be disposed in controlled landfills or used in road construction, according to the obtained results during the leaching test DIN-DEV S4. The obtained results in the leaching test EPA 1311 TLCP classify these gasification ashes as no toxic waste.

Share and Cite:

M. Echegaray, M. Costante, A. Saffe, C. Palacios and R. Rodriguez, "Behavior of Heavy Metals during the Agro-Industrial Wastes Gasification," Open Journal of Metal, Vol. 3 No. 2A, 2013, pp. 1-7. doi: 10.4236/ojmetal.2013.32A1001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Groscurth, A. Almeida, A. Bauen, F. Costa, J. Ericsson and J. Giegrich, “Total Costs and Benefits of Biomass in Selected Regions of the European Union,” Energy, Vol. 25, No. 11, 2000, pp. 1081-1095. doi:10.1016/S0360-5442(00)00016-5
[2] A. Bridgwater, “The Technical and Economic-Feasibility of Biomass Gasificationfor Power-Generation,” Fuel, Vol. 74, No. 5, 1995, pp. 631-653. doi:10.1016/0016-2361(95)00001-L
[3] M. Baratieri, P. Baggio, L. Fiori and M. Grigiante, “Biomass as an Energy Source: Thermodynamic Constraints on the Performance of the Conversion Process,” Bioresource Technology, Vol. 99, No. 15, 2008, pp. 7063-7073. doi:10.1016/j.biortech.2008.01.006
[4] C. Franco, F. Pinto, I. Gulyurtlu and I. Cabrita, “The Study of Reactions Influencing the Biomass Steam Gasification Process,” Fuel, Vol. 82, No. 7, 2003, pp. 835-842. doi:10.1016/S0016-2361(02)00313-7
[5] D. Ross, R. Noda, M. Horio, A. Kosminski, P. Ashman and P. Mullinger, “Axial Gas Profiles in a Bubbling Fluidized Bed Biomass Gasifier,” Fuel, Vol. 86, No. 10-11, 2007, pp. 1417-1429. doi:10.1016/j.fuel.2006.11.028
[6] G. Taralas and M. Kontominas, “Pyrolysis of Solid Residues Commencing from the Olive Oil Food Industry for Potential Hydrogen Production,” Journal of Analytical and Applied Pyrolysis, Vol. 76, No. 1-2, 2006, pp. 109-116. doi:10.1016/j.jaap.2005.08.004
[7] P. Foscolo, A. Germanà, N. Jand and S. Rapagnà, “Design and Cold Model Testing of a Biomass Gasifier Consisting of Two Interconnected Fluidized Beds,” Powder Technology, Vol. 173, No. 3, 2007, pp. 179-188. doi:10.1016/j.powtec.2007.01.008
[8] R. Rodriguez and S. Udaquiola, “Gasificación Térmica de Residuos de la Agroindustria, San Juan,” Proceedings of 2th Congreso Iberoamericano, Hidrógeno y Fuentes Sustentables de Energía, Hyfusen, 2009, pp. 110-115.
[9] S. Abadanes, “Comportement des Metauxlourdsdans les Procédéséchetsménagers,” Thèse du Doctorat, Université de Perpignan, 2001.
[10] J. Toledo, J. Corella and L. Corella, “The Partitioning of Heavy Metals in Incineration of Sludges and Waste in a Bubbling Fluidized Bed. 2. Interpretation of Results with a Conceptual Model,” Journal of Hazardous Materials, Vol. 126, No. 1-3, 2005, pp. 158-168. doi:10.1016/j.jhazmat.2005.06.021
[11] E. Kurkela, M. Kurkela and A. Moilanen, “Fluidised-Bed Gasification of High-Alkali Biomass Fuels,” Proceedings of Science in Thermal and Chemical Biomass Conversion, 2006, pp. 662-676.
[12] V. Skoulou, G. Koufodimos, Z. Samaras and A. Zaba- niotou, “Low Temperature Gasification of Olive Kernels in a 5-kW Fluidized Bed Reactor for H2-Rich Producer Gas,” International Journal of Hydrogen Energy, Vol. 33, No. 22, 2008, pp. 6515-6524. doi:10.1016/j.ijhydene.2008.07.074
[13] R. Rodriguez, M. Echegaray, R. Y. Castro and S. Udaquiola, “Distribución Química de Plomo, Cromo y Cadmio en lodos Cloacales y sus Cenizas,” Revista Académica de la Facultad de Ingeniería de la Universidad Autónoma de Yucatán, Vol. 11, No. 2, 2007, pp. 31-38.
[14] R. Rodriguez, C. Palacios, S. Udaquiola, G. Flamant, O. Martínez and G. Mazza, “Estudio de la Vaporización de Elementos Traza Durante la Combustión de Barros Cloacales,” Rev. Facultad De Ingeniería-Universidad De Antioquia, Vol. 55, 2010, pp. 64-73.
[15] J. Pels, D. De Nie and J. Kiel, “Utilization of Ashes from Biomass Combustion and Gasification,” Proceedings of the 14th European Biomass Conference & Exhibition, Bioenergy NoE Partner Publications, 2009.
[16] DIN 38414-S4, “German Standard Procedure for Water, Wastewater and Sediment Testing (Group S),” Determination of Leachability by Water, Institutfür Normung, Berlín, Alemania, 1984.
[17] EPA TCLP, “Toxicity Characteristic Leaching Procedure. Method 1311. Test Methods for Evaluating Solid Waste,” US Environmental Protection Agency, Washington DC, 1992.
[18] NEN 7341, “Determination of the Leaching Behavior of Granular Materials: Availability Test,” Netherlands Normalization Institute, Delft, Holanda, 1993.
[19] H. Van Der Sloot, D. Kosson, T. Eighmy, R. Comans and O. Hjelmar, “Approach towards International Standarization: A Concise Scheme for Testing of Granular Waste Leachability,” Proceeding of the International Conference on Environmental Implications of Construction Materials and Technology Developments, Environmental Aspects of Construction with Waste Materials, Elsevier Science, 1994, pp. 453-466. doi:10.1016/S0166-1116(08)71478-X
[20] L. Xie, T. Li, J. Gao, X. Fei, X. Wu and Y. Jiang, “Effect of Moisture Content in Sewage Sludge on Air Gasification,” Journal of Fuel Chemistry and Technology, Vol. 38, No. 5, 2010, pp. 615-620. doi:10.1016/S1872-5813(10)60048-5
[21] C. Pfeifer, S. Koppatz and H. Hofbauer, “Steam Gasification of Various Feedstocks at a Dual Fluidised Bed Gasifier: Impacts of Operation Conditions and Bed Materials,” Biomass Conversion and Biorefinery, Vol. 1, No. 1, 2011, pp. 39-53. doi:10.1007/s13399-011-0007-1
[22] F. Pinto, H. Lopes, R. Andre, I. Gulyurtlu and I. Cabrita, “Effect of Catalysts in the Quality of Syngas and By-Products Obtained by Co-Gasification of Coal and Wastes. 2: Heavy Metals, Sulphur and Halogen Compounds Abatement,” Fuel, Vol. 87, No. 7, 2008, pp. 1050-1062. doi:10.1016/j.fuel.2007.06.014
[23] R. Rodriguez, S. Acosta, A. Saffe and S. Udaquiola, “Predicción de la Partición de Cd, Cr y Pb Durante la Gasificación de Residuos Agroindustriales,” Proceedings of the Congreso Internacional de Ciencia y Tecnología Ambiental, Asociación Argentina para el Progreso de las Ciencias, Mar del Plata, Buenos Aires, 2012, pp. 422- 427.
[24] W. Mojtahedi and K. Salo, “Fate of Alkali and Trace Metals in Biomass Gasification,” Biomass and Bionergy, Vol. 15, No. 3, 1998, pp. 263-267. doi:10.1016/S0961-9534(98)00019-1
[25] K. Park, J. Hyun, S. Maken, S. Jang and J. Park, “Vitrification of Municipal Solid Waste Incinerator Fly Ash Using Brown’s Gas,” Energy Fuels, Vol. 19, No. 1, 2005, pp. 258-262. doi:10.1021/ef049953z
[26] P. Vervaeke, F. Tack, F. Navez, J. Martin, M. Verboo and N. Lust, “Fate of Heavy Metals during Fixed Bed Downdraft Gasification of Willow Wood Harvested from Contaminated Sites,” Biomass Bioenergy, Vol. 30, No. 1, 2006, pp. 58-65. doi:10.1016/j.biombioe.2005.07.001
[27] X. Wei, U. Schnell and K. Hein, “Behaviour of Gaseous Chlorine and Alkali Metals during Biomass Thermal Utilization,” Fuel, Vol. 84, No. 7-8, 2005, pp. 841-848.
[28] C. Lin, H. Kuo, M. Wey, S. Chang and K. Wang, “Inhibition and Promotion: The Effect of Earth Alkali Metals and Operation Temperature on Particle Agglomeration/ Defluidization during Incineration in Fluidized Bed,” Powder Technology, Vol. 189, No. 1, 2009, pp. 57-63. doi:10.1016/j.powtec.2008.06.003
[29] C. Lin, M. Tsai and C. Chang, “The Effects of Agglomeration/Defluidization on Emission of Heavy Metals for Various Fluidized Parameters in Fluidized-Bed Incineration,” Fuel Processing Technology, Vol. 91, No. 1, 2010, pp. 52-61. doi:10.1016/j.fuproc.2009.08.012
[30] H. Cui, S. Turn, V. Keffer, D. Evans, T. Tran and M. Foley, “Study on the Fate of Metal Elements from Biomass in a Bench-Scale Fluidized Bed Gasifier,” Fuel, Vol. 108, 2013, pp. 1-12. doi:10.1016/j.fuel.2011.07.029
[31] J. Song, Y. Sung, T. Yu, Y. Choi and U. Lee, “Optimization of Biomass Gasification for F-T Bio-Diesel Synthesis,” Proceedings of the 20th International Conference on Fluidized Bed Combustion, Part 5, 2010, pp. 633-635.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.