Polydopamine Particles Effect on Melanoma Cells Proliferation and Melanin Secretion

Abstract

Melanin is a biopolymer implicated in the protection of cellular membranes and DNA produced by melanocytes. This pigment has a dual role and should be considered as a photo-protector and as a photosensitizer due to its interaction with UV. The design of multifunctional and biologically responsive coatings is of major interest in modern biomaterials science. The aim of this study is not only to characterize the deposition of multilayered polyelectrolytes films made from polydopamine particles and polyamines like poly-(L-lysine hydrobromide) (PLL), but also to evaluate melanoma cells activity in terms of proliferation and their capacity to stimulate melanin secretion. One could expect that the presence of a melanin like material in the film may have a positive or a negative feedback on the melanin biosynthesis and consequently on melanoma development. Some comparisons are also done with pure polydopamine grains in suspension in the cell culture medium, to investigate if the immobilization of the polydopamine grains has an influence on their bioactivity.

Share and Cite:

S. Eap, A. Ferrand, V. Machi, V. Ball, O. Huck and N. Benkirane-Jessel, "Polydopamine Particles Effect on Melanoma Cells Proliferation and Melanin Secretion," Advances in Chemical Engineering and Science, Vol. 3 No. 3A, 2013, pp. 1-10. doi: 10.4236/aces.2013.33A1001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. A. Peppas and R. Langer, “New Challenges in Biomaterials,” Science, Vol. 263, No. 5154, 1994, pp. 1715-1720. doi:10.1126/science.8134835
[2] R. Langer and D. A. Tirrell, “Designing Materials for Biology and Medicine,” Nature, Vol. 428, No. 6982, 2004, pp. 487-492. doi:10.1038/nature02388
[3] D. E. Discher, P. Janmey and Y.-L. Wang, “Tissue Cells Feel and Respond to the Stiffness of Their Substrate,” Science, Vol. 310, No. 5751, 2005, pp. 1139-1143. doi:10.1126/science.1116995
[4] Y. Hirano and D. J. Mooney, “Peptide and Protein Presenting Materials for Tissue Engineering,” Advanced Materials, Vol. 16, No. 1, 2004, pp. 17-25. doi:10.1002/adma.200300383
[5] K. Y. Lee and D. J. Mooney, “Hydrogels for Tissue Engineering,” Chemical Review, Vol. 101, No. 7, 2001, pp. 1869-1879. doi:10.1021/cr000108x
[6] Z. Tang, Y. Wang, P. Podsiadlo and N. A. Kotov, “Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering,” Advanced Materials, Vol. 18, No. 24, 2006, pp. 3203-3224. doi:10.1002/adma.200600113
[7] H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings,” Science, Vol. 318, No. 5849, 2007, pp. 426-430. doi:10.1126/science.1147241
[8] B. Zhu and S. Edmondson, “Polydopamine-Melanin Initiators for Surface-Initiated ATRP,” Polymer, Vol. 52, No. 10, 2011, pp. 2141-2149. doi:10.1016/j.polymer.2011.03.027
[9] K. C. Black, J. Yi, J. G. Rivera, D. C. Zelasko-Leon and P. B. Messersmith, “Polydopamine-Enabled Surface Functionalization of Gold Nanorods for Cancer Cell-Targeted Imaging and Photothermal Therapy,” Nanomedicine, Vol. 8, No. 1, 2013, pp. 17-28. doi:10.2217/nnm.12.82
[10] M. E. Lynge, R. van der Westen, A. Postma and B. Stadler, “Polydopamine—A Nature-Inspired Polymer Coating for Biomedical Science,” Nanoscale, Vol. 3, No. 12, 2011, pp. 4916-4928. doi:10.1039/c1nr10969c
[11] M. d’Ischia, A. Napolitano, A. Pezzella, P. Meredith and T. Sarna, “Chemical and Structural Diversity in Eumelanins: Unexplored Bio-Optoelectronic Materials,” Angewandte Chemie International Edition in English, Vol. 48, No. 22, 2009, pp. 3914-3921. doi:10.1002/anie.200803786
[12] H. Swalwell, J. Latimer, R. M. Haywood and M. A. Birch-Machin, “Investigating the Role of Melanin in UVA/UVB and Hydrogen Peroxide-Induced Cellular and Mitochondrial ROS Production and Mitochondrial DNA Damage in Human Melanoma Cells,” Free Radical Biology and Medicine, Vol. 52, No. 3, 2012, pp. 626-634. doi:10.1016/j.freeradbiomed.2011.11.019
[13] T. Pan, J. Zhu, W.-J. Hwu and J. Jankovic, “The Role of Alpha-Synuclein in Melanin Synthesis in Melanoma and Dopaminergic Neuronal Cells,” PLoS ONE, Vol. 7, No. 9, 2012, Artciel ID: e45183. doi:10.1371/journal.pone.0045183
[14] C. J. Bettinger, R. Langer and J. T. Borenstein, “Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function,” Angewandte Chemie— International Edition, Vol. 48, No. 30, 2009, pp. 5406-5415. doi:10.1002/anie.200805179
[15] H. Lee, J. Rho and P. B. Messersmith, “Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings,” Advanced Materials, Vol. 21, No. 4, 2009, pp. 431-434. doi:10.1002/adma.200801222
[16] F. Bernsmann, B. Frisch, C. Ringwald and V. Ball, “Protein Adsorption on Dopamine-Melanin Films: Role of Electrostatic Interactions Inferred from Zeta-Potential Measurements versus Chemisorption,” Journal of Colloid Interface Science, Vol. 344, No. 1, 2010, pp. 54-60.
[17] F. Bernsmann, J.-C. Voegel and V. Ball, “Different Synthesis Methods Allow to Tune the Permeability and Permselectivity of Dopamine—Melanin Films to Electrochemical Probes,” Electrochimica Acta, Vol. 56, No. 11, 2011, pp. 3914-3919. doi:10.1016/j.electacta.2011.02.028
[18] F. Bernsmann, O. Ersen, J. C. Voegel, E. Jan, N. A. Kotov and V. Ball, “Melanin-Containing Films: Growth from Dopamine Solutions versus Layer-by-Layer Deposition,” Chemphyschem, Vol. 11, No. 15, 1002, pp. 3299-3305.
[19] B. P. Lee, P. B. Messersmith, J. N. Israelachvili and J. H. Waite, “Mussel-Inspired Adhesives and Coatings,” Annual Review of Materials Research, Vol. 41, 2011, pp. 99-132.
[20] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wagung dünner Schichten und zur Mikrowagung,” Zeitschrift für Physik, Vol. 155, No. 2, 1959, pp. 206-222. doi:10.1007/BF01337937
[21] V. Ball, M. Michel, F. Boulmedais, J. Hemmerle, Y. Haikel, P. Schaaf and J. C. Voegel, “Nucleation Kinetics of Calcium Phosphates on Polyelectrolyte Multilayers Displaying Internal Secondary Structure,” Crystal Growth & Design, Vol. 6, No. 1, 2005, pp. 327-334. doi:10.1021/cg050044p
[22] P. Meredith, B. J. Powell, J. Riesz, S. P. Nighswander-Rempel, M. R. Pederson and E. G. Moore, “Towards Structure-Property-Function Relationships for Eumelanin,” Soft Matter, Vol. 2, No. 1, 2006, pp. 37-44. doi:10.1039/b511922g
[23] N. Jessel, F. Atalar, P. Lavalle, J. Mutterer, G. Decher, P. Schaaf, J. C. Voegel and J. Ogier, “Bioactive Coatings Based on a Polyelectrolyte Multilayer Architecture Functionalized by Embedded Proteins,” Advanced Materials, Vol. 15, No. 9, 2003, pp. 692-695. doi:10.1002/adma.200304634
[24] N. Benkirane-Jessel, P. Lavalle, F. Meyer, F. Audouin, B. Frisch, P. Schaaf, J. Ogier, G. Decher and J. C. Voegel, “Control of Monocyte Morphology on and Response to Model Surfaces for Implants Equipped with Anti-Inflammatory Agents,” Advanced Materials, Vol. 16, No. 17, 2004, p. 1507. doi:10.1002/adma.200306613
[25] N. Benkirane-Jessel, P. Schwinte, P. Falvey, R. Darcy, Y. Haikel, P. Schaaf, J. C. Voegel and J. Ogier, “Build-Up of Polypeptide Multilayer Coatings with Anti-Inflammatory Properties Based on the Embedding of Piroxicam-Cyclodextrin Complexes,” Advanced Functional Materials, Vol. 14, No. 2, 2004, pp. 174-182. doi:10.1002/adfm.200304413
[26] N. Jessel, M. Oulad-Abdelghani, F. Meyer, P. Lavalle, Y. Haikel, P. Schaaf and J. C. Voegel, “Multiple and Time-Scheduled in Situ DNA Delivery Mediated by Beta-Cyclodextrin Embedded in a Polyelectrolyte Multilayer,” Proceedings of the National Academy of Sciences, Vol. 103, No. 23, 2006, pp. 8618-8621. doi:10.1073/pnas.0508246103
[27] B. S. Kim, S. W. Park and P. T. Hammond, “Hydrogen-Bonding Layer-by-Layer-Assembled Biodegradable Polymeric Micelles as Drug Delivery Vehicles from Surfaces,” ACS Nano, Vol. 2, No. 2, 2008, pp. 386-392. doi:10.1021/nn700408z
[28] N. Benkirane-Jessel, P. Lavalle, E. Hubsch, V. Holl, B. Senger, Y. Haikel, J. C. Voegel, J. Ogier and P. Schaaf, “Short-Time Tuning of the Biological Activity of Functionalized Polyelectrolyte Multilayers,” Advanced Functional Materials, Vol. 15, No. 4, 2005, pp. 648-654. doi:10.1002/adfm.200400129
[29] A. Dierich, E. Le Guen, N. Messaddeq, J.-F. Stoltz, P. Netter, P. Schaaf, J.-C. Voegel and N. Benkirane-Jessel, “Bone Formation Mediated by Synergy-Acting Growth Factors Embedded in a Polyelectrolyte Multilayer Film,” Advanced Materials, Vol. 19, No. 5, 2007, pp. 693-697. doi:10.1002/adma.200601271
[30] S. Facca, C. Cortez, C. Mendoza-Palomares, N. Messadeq, A. Dierich, A. P. R. Johnston, D. Mainard, J. C. Voegel, F. Caruso and N. Benkirane-Jessel, “Active Multilayered Capsules for in Vivo Bone Formation,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 8, 2010, pp. 3406-3411. doi:10.1073/pnas.0908531107

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.