Share This Article:

Mössbauer, X-ray and Magnetic Studies of Black Sand from the Italian Mediterranean Sea

Abstract Full-Text HTML Download Download as PDF (Size:855KB) PP. 91-95
DOI: 10.4236/wjnst.2013.33016    4,868 Downloads   7,365 Views   Citations

ABSTRACT

The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mossbauer spectrum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.



Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Braccini, O. Pellegrinelli and K. Krämer, "Mössbauer, X-ray and Magnetic Studies of Black Sand from the Italian Mediterranean Sea," World Journal of Nuclear Science and Technology, Vol. 3 No. 3, 2013, pp. 91-95. doi: 10.4236/wjnst.2013.33016.

References

[1] E. Murad and J. Cashion, “Mossbauer Spectroscopy of Environmental Materials and Their Industrial Utilization,” Kluwer Academic Publishers, Dordrecht, 2004.
[2] T. M. Peev, et al., “Mossbauer and X-ray Study of Natural Magnetite Sands,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 190, No. 2, 1995, pp. 357-361. doi:10.1007/BF02040012
[3] E. Cruz-Sánchez, et al., “Study of Titanomagnetite Sands from Costa Rica,” Journal of Alloys and Compounds, Vol. 369, No. 1-2, 2004, pp. 265-268. doi:10.1016/j.jallcom.2003.09.064
[4] C. Pizarro, et al., “Some Cautions on the Interpretation of Mossbauer Spectra in Mineralogical Studies of Volcanics Soils,” Boletín de la Sociedad Chilena de Química, Vol. 45, No. 2, 2000, pp. 1-8. doi:10.4067/S0366-16442000000200011
[5] G. Longworth, et al., “Mossbauer Effect and Magnetic Studies of Secondary Iron Oxides in Soils,” Journal of Soil Science, Vol. 30, No. 1, 1979, pp. 93-110. doi:10.1111/j.1365-2389.1979.tb00968.x
[6] M. J. Singer, et al., “Mossbauer Spectroscopic Evidence for Citrate-Bicarbonate-Dithionite Extraction of Maghemite from Soils,” Clays and Clay Minerals, Vol. 43, No. 1, 1995, pp. 1-7. doi:10.1346/CCMN.1995.0430101
[7] A. T. Goulart, et al., “Multiple Iron-Rich Spinel Phases and Hematite in a Magnetic Soil Developing on Tuffite,” Physics and Chemistry of Minerals, Vol. 25, No. 1, 1997, pp. 63-69. doi:10.1007/s002690050087
[8] J. í. Hjollum and M. Bo Madsen, “Fit;o,)—A Mossbauer Spectrum Fitting Program,” 2009. http://arxiv.org/abs/0912.0449
[9] J. Rodriguez-Carvajal, “Fullprof: A Program for Rietveld Refinement and Pattern Matching Analysis,” Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990, p. 127.
[10] N. N. Greenwood and T. C. Gibb, “Mossbauer Spectroscopy,” Chapman and Hall, London, 1971.
[11] E. Kuzmann, et al., “A critical Review of Analytical Applications of Mossbauer Spectroscopy Illustrated by Mineralogical and Geological Examples,” Pure and Applied Chemistry, Vol. 75, No. 6, 2003, pp. 801-858. doi:10.1351/pac200375060801
[12] M. E. Fleet, “The Structure of Magnetite: Symmetry of Cubic Spinels,” Journal of Solid State Chemistry, Vol. 62 No. 1, 1986, pp. 75-82. doi:10.1016/0022-4596(86, pp.90218-5
[13] R. L. Blake, et al., “Refinement of the Hematite Structure,” American Mineralogist, Vol. 51, 1966, pp. 123-129.
[14] B. A. Wechsler and C. T. Prewitt, “Crystal Structure of Ilmenite (FeTiO3) at High Temperature and High Pressure,” American Mineralogist, Vol. 69, 1984, pp. 176-185.
[15] P. Orlandi and M. Pasero, “Allanite(La) from Buca Della Vena Mine, Apuan Alps, Italy, an Epidote-Group Min,” Canadian Mineralogist, Vol. 44, No. 1, 2006, pp. 63-68. doi:10.2113/gscanmin.44.1.63
[16] J. R. Clark, et al., “Crystal-Chemical Characterization of Clinopyroxenes,” Mineralogical Society of America, Vol. 2, 1969, pp. 31-50.
[17] S. C. Abrahams and S. Geller, “Refinement of the Structure of Grossularite Garnet,” Acta Crystallographica, Vol. 11, 1958, pp. 437-441. doi:10.1107/S0365110X5800116X
[18] M. W. Phillips and P. H. Ribbe, “The Structures of Monoclinic Potassium Rich Feldspars,” American Mineralogist, Vol. 58, 1973, pp. 263-270.
[19] P. H. Wei, “The Structure of Alpha-Quartz,” Zeitschrift für Kristallographie, Vol. 92, 1935, pp. 355-362.
[20] R. W. G. Wykoff, “The Crystal Structures of Some Carbonates of the Calcite Group,” American Journal of Science, Vol. 50, 1920, pp. 317. doi:10.2475/ajs.s4-50.299.317
[21] D. Gatteschi, et al., “Exploring the No-Man’s Land between Molecular Nanomagnets and Magnetic Nanoparticles,” Angewandte Chemie International Edition, Vol. 51, No. 20, 2012, pp. 4792-4800. doi:10.1002/anie.201105428
[22] Sources of Ionizing Radiation, UNSCEAR, “Report to the General Assembly, Scientific Annexes A and B,” 2008. http://www.unscear.org/unscear/en/publications/2008_1.html

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.