Share This Article:

Synthesis of Biphasic Calcium Phosphate by Hydrothermal Route and Conversion to Porous Sintered Scaffold

Abstract Full-Text HTML Download Download as PDF (Size:1919KB) PP. 273-278
DOI: 10.4236/jbnb.2013.43034    3,262 Downloads   4,761 Views   Citations

ABSTRACT

Biphasic calcium phosphate (BCP) consisting of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) was successfully synthesized by new hydrothermal route using β-TCP as precursor. The X-ray diffraction analysis of as-synthesized powder indicated that β-TCP had been transformed into HA phase and amount of HA formed gradually increased with prolonged time. The results revealed that the recent technique may be able to control the composition of the obtained BCP which would influence the bioresorbability. Porous body of BCP was prepared by impregnation of polymeric sponge template with the slurry of the powder followed by sintering. The X-ray diffraction of porous product revealed that the composition of β-TCP increased after sintering indicating that HA had been decomposed. Porous BCP obtained from the recent technique possessed both macro and micropores structure which are useful for rapid tissue formation. Besides, the recent porous fabrication technique yielded porous BCP which preserved the sponge template morphology, enabling it to fabricate porous material with controlled pores structure.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S.  , A. Noor, S. Kasim, R. Othman, I. Ana and K. Ishikawa, "Synthesis of Biphasic Calcium Phosphate by Hydrothermal Route and Conversion to Porous Sintered Scaffold," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3, 2013, pp. 273-278. doi: 10.4236/jbnb.2013.43034.

References

[1] S. H. Kwon, Y. K. Jun, S. H. Hong and H. E. Kim, “Synthesis and Dissolution Behavior of β-TCP and HA/β-TCP Composite Powders,” Journal of the European Ceramic Society, Vol. 23, No. 7, 2003, pp. 1039-1045. doi:10.1016/S0955-2219(02)00263-7
[2] S. Kannan and J. M. F. Ferreira, “Synthesis and Thermal Stability of Hydroxyapatite-β-Tricalcium Phosphate Composites with Cosubstituted Sodium, Magnesium and Fluorine,” Chemistry of Materials, Vol. 18, No. 1, 2006, pp. 198-203. doi:10.1021/cm051966i
[3] J. S. Cho, Y. N. Ko, H. Y. Koo and Y. C. Kang, “Synthesis of Nano-Sized Biphasic Calcium Phosphate Ceramics with Spherical Shape by Flame Spray Pyrolysis,” Journal of Materials Science: Materials in Medicine, Vol. 21, No. 4, 2010, pp. 1143-1149. doi:10.1007/s10856-009-3980-1
[4] E. Caroline Victoria and F. D. Gnanam, “Synthesis and Characterisation of Biphasic Calcium Phosphate,” Trends in Biomaterials & Artificial Organs, Vol. 16, No. 1, 2002, pp. 12-14.
[5] H. Rojbani, M. Nyan, K. Ohya and S. Kasugai, “Evaluation of the Osteoconductivity of α-Tricalcium Phosphate, β-Tricalcium Phosphate, and Hydroxyapatite Combined with or without Simvastatin in Rat Calvarial Defect,” Journal of Biomedical Materials Research Part A, Vol. 98, No. 4, 2011, pp. 488-498. doi:10.1002/jbm.a.33117
[6] H. S. Ryu, K. S. Hong, J. K. Lee, D. J. Kim, J. H. Lee, B. S. Chang, D. H. Lee, C. K. Lee and S. S. Chung, “Magnesia-Doped HA/β-TCP Ceramics and Evaluation of Their Biocompatibility,” Biomaterials, Vol. 25, No. 3, 2004, pp. 393-401. doi:10.1016/S0142-9612(03)00538-6
[7] X. Yang and Z. Wang, “Synthesis of Biphasic Ceramics of Hydroxyapatite and β-Tricalcium Phosphate with Controlled Phase Content and Porosity,” Journal of Materials Chemistry, Vol. 8, No. 10, 1998, pp. 2233-2237. doi:10.1039/a802067a
[8] D. Daculsi, O. Laboux, O. Malard and P. Weiss, “Current State of the Art of Biphasic Calcium Phosphate Bioceramics,” Journal of Materials Science: Materials in Medicine, Vol. 14, No. 3, 2003, pp. 195-200. doi:10.1023/A:1022842404495
[9] M. Yoshimura, H. Suda, K. Okamoto and K. Ioku, “Hydrothermal Synthesis of Biocompatible Whiskers,” Journal of Materials Science, Vol. 29, No. 13, 1994, pp. 33993402. doi:10.1007/BF00352039
[10] H. Wakae, A. Takeuchi, K. Udoh, S. Matsuya, M. L. Munar, R. Z. LeGeros, A. Nakasima and K. Ishikawa, “Fabrication of Macroporous Carbonate Apatite Foam by Hydrothermal Conversion of α-Tricalcium Phosphate in Carbonate Solutions,” Journal of Biomedical Materials Research Part A, Vol. 87A, No. 4, 2008, pp. 957-963. doi:10.1002/jbm.a.31620
[11] O. V. Sinitsyna, A. G. Veresov, E. S. Kovaleva, Yu. V. Kolen’ko, V. I. Putlyaev and Yu. D. Tretyakov, “Synthesis of Hydroxyapatite by Hydrolysis of α-Ca3(PO4)3,” Russian Chemical Bulletin, International Edition, Vol. 54, No. 1, 2005, pp. 79-86.
[12] L. G. Galea, M. Bohner, J. Lemaitre, T. Kohler and R. Muller, “Bone Substitute: Transforming β-Tricalcium Phosphate Porous Scaffolds into Monetite,” Biomaterials, Vol. 29, No. 24-25, 2008, pp. 3400-3407. doi:10.1016/j.biomaterials.2008.04.041
[13] A. Ito and K. Onuma, “Growth of Hydroxyapatite Crystals,” In: K. Byrappa and T. Ohachi, Eds., Crystal Growth Technology, William Andrew, Inc., New York, 2003, pp. 525-559. doi:10.1016/B978-081551453-4.50018-X
[14] G. Daculsi, R. Z. LeGeros, E. Nery, K. Lynch and B. Kerebel, “Transformation of Biphasic Calcium Phosphate Ceramics in Vivo: Ultrastructural and Physicochemical Characterization,” Journal of Biomedical Materials Research Part A, Vol. 23, No. 8, 1989, pp. 883-894. doi:10.1002/jbm.820230806
[15] R. W. N. Nilen and P. W. Richter, “The Thermal Stability of Hydroxyapatite in Biphasic Calcium Phosphate Ceramics,” Journal of materials Science: Materials in Medicine, Vol. 19, No. 4, 2008, pp. 1693-1702. doi:10.1007/s10856-007-3252-x
[16] H. S. Ryu, K. S. Hong, J. K. Lee, D. J. Kim, J. H. Lee, B. S. Chang, D. H. Lee, C. K. Lee and S. S. Chung, “Magnesia-Doped HA/β-TCP Ceramics and Evaluation of Their Biocompatibility,” Biomaterials, Vol. 25, No. 3, 2004, pp. 393-401. doi:10.1016/S0142-9612(03)00538-6
[17] A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti and N. Roveri, “Magnesium Influence on Hydroxyapatite Crystallization,” Journal of Inorganic Biochemistry, Vol. 49, No. 1, 1993, pp. 69-78. doi:10.1016/0162-0134(93)80049-F
[18] S. Yang, K. F. Leong, Z. Du and C. K. Chua, “The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors,” Tissue Engineering, Vol. 7, No. 6, 2001, pp. 679-689. doi:10.1089/107632701753337645
[19] H. Yuan and K. Groot, “Calcium Phosphate Biomaterials: An Overview,” In: R. L. Reis and S. Weiner, Eds., Learning from Nature How to Design New Implantable Biomaterialsis: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes, Springer, Amsterdam, 2005, pp. 37-57. doi:10.1007/1-4020-2648-X_3

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.