Share This Article:

Methylene blue protects mitochondrial respiration from ethanol withdrawal stress

Abstract Full-Text HTML XML Download Download as PDF (Size:1070KB) PP. 24-34
DOI: 10.4236/abb.2013.47A2004    4,384 Downloads   7,662 Views   Citations

ABSTRACT

Methylene blue (MB), a tricyclic phenothiazine drug, has been reported to enhance mitochondrial functions including mitochondrial respiration. By comparison, stress associated with abrupt ethanol withdrawal (EW) impedes mitochondrial functions. We investigated whether MB protects mitochondrial respiration and cell survival from EW stress through a key mitochondrial enzyme, cytochrome c oxidase (COX). We also investigated whether the MB’s protection involves the inhibition of an excitatory neurotransmitter, glutamate. Male rats were exposed to and withdrawn from ethanol-diet (7.5%, 5 weeks). MB (0.5 mg/kg, intraperitoneal) was injected for the last 5 days of ethanol-diet and on the first day of EW. Cerebellum was then harvested to measure mitochondrial respiration and COX expression using real-time XF respirometer and immunohistochemistry, respectively. Separately, HT22 cells (a murine hippocampal cell line) were exposed to and abruptly withdrawn for 4 hours from chronic ethanol (100 mM, 3 days). MB was administered during EW with or without a COX inhibitor (NaN3) or glutamate. Mitochondrial respiration, COX content, and cell viability were then assessed using real-time XF respirometer, an immunoblot method, and Calcein assay, respectively. MB attenuated the suppressing effects of EW on mitochondrial respiration, COX content, and cell survival. This protection was reduced after NaN3 or glutamate cotreatment. These results suggest that MB treatment help maintain mitochondrial respiratory and cellular integrity through COX-upregulation and glutamateinhibition upon EW stress. MB treatment may help identify mitochondrial mechanisms underlying hyperexcitatory CNS disorders.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Jung, M. and Metzger, D. (2013) Methylene blue protects mitochondrial respiration from ethanol withdrawal stress. Advances in Bioscience and Biotechnology, 4, 24-34. doi: 10.4236/abb.2013.47A2004.

References

[1] Gonzalez-Lima, F. and Cada, A. (1998) Quantitative histochemistry of cytochrome oxidase activity: Theory, methods, and regional brain vulnerability cytochrom oxidase in neuronal metabolism and Alzheimer’s disease. Plenum Press, New York. doi:10.1007/978-1-4757-9936-1
[2] Atamna, H. and Kumar, R. (2010) Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. Journal of Alzheimer’s Disease, 20, S439-S452.
[3] Jung, M.E., Ju, X., Metzger, D.B. and Simpkins, J.W. (2011) Ethanol withdrawal hastens the aging of cytochrome c oxidase. Neurobiology of Aging, 33, 618.e621632.
[4] Peter, C., Hongwan, D., Kupfer, A. and Lauterburg, B.H. (2000) Pharmacokinetics and organ distribution of intravenous and oral methylene blue. European Journal of Clinical Pharmacology, 56, 247-250. doi:10.1007/s002280000124
[5] O’Leary 3rd, J.C., Li, Q., Marinec, P., Blair, L.J., Congdon, E.E., Johnson, A.G., Jinwal, U.K., Koren 3rd, J., Jones, J.R., Kraft, C., Peters, M., Abisambra, J.F., Duff, K.E., Weeber, E.J., Gestwicki, J.E. and Dickey, C.A. (2010) Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Molecular Neurodegeneration, 5, 45. doi:10.1186/1750-1326-5-45
[6] Sills, M.R. and Zinkham, W.H. (1994) Methylene blueinduced Heinz body hemolytic anemia. Archives of Pediatrics and Adolescent Medicine, 148, 306-310. doi:10.1001/archpedi.1994.02170030076017
[7] Wischik, C.M., Edwards, P.C., Lai, R.Y., Roth, M. and Harrington, C.R. (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proceedings of the National Academy of Sciences of the United States of America, 93, 11213-11218. doi:10.1073/pnas.93.20.11213
[8] Narsapur, S.L. and Naylor, G.J. (1983) Methylene blue. A possible treatment for manic depressive psychosis. Journal of Affective Disorders, 5, 155-161. doi:10.1016/0165-0327(83)90008-3
[9] Callaway, N.L., Riha, P.D., Bruchey, A.K., Munshi, Z. and Gonzalez-Lima, F. (2004) Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacology Biochemistry and Behavior, 77, 175-181. doi:10.1016/j.pbb.2003.10.007
[10] Atamna, H., Nguyen, A., Schultz, C., Boyle, K., Newberry, J., Kato, H. and Ames, B.N. (2008) Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB Journal, 22, 703712. doi:10.1096/fj.07-9610com
[11] Oz, M., Lorke, D.E. and Petroianu, G.A. (2009) Methylene blue and Alzheimer’s disease. Biochemical Pharmacology, 78, 927-932. doi:10.1016/j.bcp.2009.04.034
[12] Salaris, S.C., Babbs, C.F. and Voorhees 3rd, W.D. (1991) Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochemical Pharmacology, 42, 499-506. doi:10.1016/0006-2952(91)90311-R
[13] Zhang, X., Rojas, J.C. and Gonzalez-Lima, F. (2006) Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotoxicity Research, 9, 47-57. doi:10.1007/BF03033307
[14] Kelner, M.J., Bagnell, R., Hale, B. and Alexander, N.M. (1988) Methylene blue competes with paraquat for reduction by flavo-enzymes resulting in decreased superoxide production in the presence of heme proteins. Archives of Biochemistry and Biophysics, 262, 422-426. doi:10.1016/0003-9861(88)90393-1
[15] Buchsbaum, D.G., Buchanan, R.G., Poses, R.M., Schnoll, S.H. and Lawton, M.J. (1992) Physician detection of drinking problems in patients attending a general medicine practice. Journal of General Internal Medicine, 7, 517-521. doi:10.1007/BF02599456
[16] Mayo-Smith, M.F. (1997) Pharmacological management of alcohol withdrawal. A meta-analysis and evidencebased practice guideline. American Society of Addiction Medicine Working Group on Pharmacological Management of Alcohol Withdrawal. Journal of the American Medical Association, 278, 144-151. doi:10.1001/jama.1997.03550020076042
[17] Jung, M.E., Simpkins, J.W., Wilson, A.M., Downey, H.F. and Mallet, R.T. (2008) Intermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol-withdrawn rats. Journal of Applied Physiology, 105, 510-517. doi:10.1152/japplphysiol.90317.2008
[18] Jung, M.E., Wilson, A.M., Ju, X., Wen, Y., Metzger, D.B. and Simpkins, J.W. (2009) Ethanol withdrawal provokes opening of the mitochondrial membrane permeability transition pore in an estrogen-preventable manner. Journal of Pharmacology and Experimental Therapeutics, 328, 692698. doi:10.1124/jpet.108.146829
[19] Rouach, H., Clement, M., Orfanelli, M.T., Janvier, B., Nordmann, J. and Nordmann, R. (1983) Hepatic lipid peroxidation and mitochondrial susceptibility to peroxidative attacks during ethanol inhalation and withdrawal. Biochimica et Biophysica Acta, 753, 439-444. doi:10.1016/0005-2760(83)90068-1
[20] Rojas, J.C., Bruchey, A.K. and Gonzalez-Lima, F. (2011) Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Progress in Neurobiology, 96, 32-45. doi:10.1016/j.pneurobio.2011.10.007
[21] Jung, M.E., Yang, S.H., Brun-Zinkernagel, A.M. and Simpkins, J.W. (2002) Estradiol protects against cerebellar damage and motor deficit in ethanol-withdrawn rats. Alcohol, 26, 83-93. doi:10.1016/S0741-8329(01)00199-9
[22] Ju, X., Mallet, R.T., Downey, H.F., Metzger, D.B. and Jung, M.E. (2012) Intermittent hypoxia conditioning protects mitochondrial cytochrome c oxidase of rat cerebellum from ethanol withdrawal stress. Journal of Applied Physiology, 112, 1706-1714. doi:10.1152/japplphysiol.01428.2011
[23] Yan, L.J., Yang, S.H., Shu, H., Prokai, L. and Forster, M.J. (2007) Histochemical staining and quantification of dihydrolipoamide dehydrogenase diaphorase activity using blue native PAGE. Electrophoresis, 28, 1036-1045. doi:10.1002/elps.200600574
[24] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[25] Jung, M.E., Agarwal, R. and Simpkins, J.W. (2007) Ethanol withdrawal posttranslationally decreases the activity of cytochrome c oxidase in an estrogen reversible manner. Neuroscience Letters, 416, 160-164. doi:10.1016/j.neulet.2007.01.065
[26] Perez, E., Liu, R., Yang, S.H., Cai, Z.Y., Covey, D.F. and Simpkins, J.W. (2005) Neuroprotective effects of an estratriene analog are estrogen receptor independent in vitro and in vivo. Brain Research, 1038, 216-222. doi:10.1016/j.brainres.2005.01.026
[27] Jung, M.E., Wilson, A.M. and Simpkins, J.W. (2006) A nonfeminizing estrogen analog protects against ethanol withdrawal toxicity in immortalized hippocampal cells. Journal of Pharmacology and Experimental Therapeutics, 319, 543-550. doi:10.1124/jpet.106.103630
[28] Jung, M.E., Yan, L.J., Forster, M.J. and Simpkins, J.W. (2008) Ethanol withdrawal provokes mitochondrial injury in an estrogen preventable manner. Journal of Bioenergetics and Biomembranes, 40, 35-44. doi:10.1007/s10863-008-9129-y
[29] Prendergast, M.A., Harris, B.R., Mullholland, P.J., Blanchard 2nd, J.A., Gibson, D.A., Holley, R.C. and Littleton, J.M. (2004) Hippocampal CA1 region neurodegeneration produced by ethanol withdrawal requires activation of intrinsic polysynaptic hippocampal pathways and function of N-methyl-D-aspartate receptors. Neuroscience, 124, 869-877. doi:10.1016/j.neuroscience.2003.12.013
[30] Tsai, G.E., Ragan, P., Chang, R., Chen, S., Linnoila, V.M. and Coyle, J.T. (1998) Increased glutamatergic neurotransmission and oxidative stress after alcohol withdrawal. American Journal of Psychiatry, 155, 726-732.
[31] Hassan, H.M. and Fridovich, I. (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Archives of Biochemistry and Biophysics, 196, 385-395. doi:10.1016/0003-9861(79)90289-3
[32] Lindahl, P.E. and Oberg, K.E. (1961) The effect of rotenone on respiration and its point of attack. Experimental Cell Research, 23, 228-237. doi:10.1016/0014-4827(61)90033-7
[33] Visarius, T.M., Stucki, J.W. and Lauterburg, B.H. (1997) Stimulation of respiration by methylene blue in rat liver mitochondria. FEBS Letters, 412, 157-160. doi:10.1016/S0014-5793(97)00767-9
[34] Callaway, N.L., Riha, P.D., Wrubel, K.M., McCollum, D. and Gonzalez-Lima, F. (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neuroscience Letters, 332, 8386. doi:10.1016/S0304-3940(02)00827-3
[35] Lu, Y., Jiao, R., Chen, X., Zhong, J., Ji, J. and Shen, P. (2008) Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell. Journal of Cellular Biochemistry, 105, 1451-1460. doi:10.1002/jcb.21965
[36] Daudt 3rd, D.R., Mueller, B., Park, Y.H., Wen, Y. and Yorio, T. (2012) Methylene blue protects primary rat retinal ganglion cells from cellular senescence. Investigative Ophthalmology & Visual Science, 53, 4657-4667. doi:10.1167/iovs.12-9734
[37] Furian, A.F., Fighera, M.R., Oliveira, M.S., Ferreira, A.P., Fiorenza, N.G., de Carvalho Myskiw, J., Petry, J.C., Coelho, R.C., Mello, C.F. and Royes, L.F. (2007) Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochemistry International, 50, 164-171. doi:10.1016/j.neuint.2006.07.012
[38] Riha, P.D., Rojas, J.C. and Gonzalez-Lima, F. (2010) Beneficial network effects of methylene blue in an amnestic model. Neuroimage, 54, 2623-2634. doi:10.1016/j.neuroimage.2010.11.023
[39] Jung, M.E., Watson, D.G. and Simpkins, J.W. (2005) Suppression of protein kinase Cepsilon mediates 17betaestradiol-induced neuroprotection in an immortalized hippocampal cell line. Journal of Neurochemistry, 95, 745755. doi:10.1111/j.1471-4159.2005.03424.x
[40] Santos, M.S., Moreno, A.J. and Carvalho, A.P. (1996) Relationships between ATP depletion, membrane potential, and the release of neurotransmitters in rat nerve terminals. An in vitro study under conditions that mimic anoxia, hypoglycemia, and ischemia. Stroke, 27, 941-950. doi:10.1161/01.STR.27.5.941
[41] Adam-Vizi, V. (2005) Production of reactive oxygen species in brain mitochondria: Contribution by electron transport chain and non-electron transport chain sources. Antioxidants & Redox Signaling, 7, 1140-1149. doi:10.1089/ars.2005.7.1140
[42] Dauer, W. and Przedborski, S. (2003) Parkinson’s disease: Mechanisms and models. Neuron, 39, 889-909. doi:10.1016/S0896-6273(03)00568-3
[43] Tabrizi, S.J., Cleeter, M.W., Xuereb, J., Taanman, J.W., Cooper, J.M. and Schapira, A.H. (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Annals of Neurology, 45, 25-32. doi:10.1002/1531-8249(199901)45:1<25::AID-ART6>3.0.CO;2-E
[44] de-Oliveira, R.W. and Guimaraes, F.S. (1999) Anxiolytic effect of methylene blue microinjected into the dorsal periaqueductal gray matter. Brazilian Journal of Medical and Biological Research, 32, 1529-1532. doi:10.1590/S0100-879X1999001200012
[45] Liu, C.Y., Xie, D.P. and Liu, J.Z. (2004) Microinjection of glutamate into dorsal motor nucleus of the vagus excites gallbladder motility through NMDA receptor—nitric oxide—cGMP pathway. Neurogastroenterology and Motility, 16, 347-353. doi:10.1111/j.1365-2982.2004.00525.x
[46] Poteet, E., Winters, A., Yan, L.J., Shufelt, K., Green, K.N., Simpkins, J.W., Wen, Y. and Yang, S.H. (2012) Neuroprotective actions of methylene blue and its derivatives. PLoS One, 7, e48279. doi:10.1371/journal.pone.0048279
[47] Sanchez-Prieto, J. and Gonzalez, P. (1988) Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes). Journal of Neurochemistry, 50, 1322-1324. doi:10.1111/j.1471-4159.1988.tb10611.x
[48] Collange, O., Charles, A.L., Bouitbir, J., Chenard, M.P., Zoll, J., Diemunsch, P., Thaveau, F., Chakfe, N., Piquard, F. and Geny, B. (2012) Methylene blue protects liver oxidative capacity after gut ischaemia-reperfusion in the rat. European Journal of Vascular & Endovascular Surgery, 45, 168-175. doi:10.1016/j.ejvs.2012.11.011
[49] Mayer, B., Brunner, F. and Schmidt, K. (1993) Inhibition of nitric oxide synthesis by methylene blue. Biochemical Pharmacology, 45, 367-374. doi:10.1016/0006-2952(93)90072-5
[50] Patel, J.D., Krupka, T. and Anderson, J.M. (2007) iNOSmediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. Journal of Biomedical Materials Research Part A, 80, 381-390. doi:10.1002/jbm.a.30907
[51] Aksu, B., Umit, H., Kanter, M., Guzel, A., Aktas, C., Civelek, S. and Uzun, H. (2009) Effects of methylene blue in reducing cholestatic oxidative stress and hepatic damage after bile-duct ligation in rats. Acta Histochemica, 112, 259-269. doi:10.1016/j.acthis.2008.12.002
[52] Silva, D.F., Selfridge, J.E., Lu, J.E.L., Cardoso, S.M. and Swerdlow, R.H. (2012) Mitochondrial abnormalities in Alzheimer’s disease: Possible targets for therapeutic intervention. Advances in Pharmacology, 64, 83-126. doi:10.1016/B978-0-12-394816-8.00003-9

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.