Share This Article:

Characterization of Ciprofloxacin resistant Extended Spectrum β-Lactamase (ESBL) producing Escherichia spp. from clinical waste water in Bangladesh

Abstract Full-Text HTML Download Download as PDF (Size:992KB) PP. 15-23
DOI: 10.4236/abb.2013.47A2003    3,608 Downloads   6,357 Views   Citations

ABSTRACT

Clinical Waste Water (CWW) possesses the risks of spreading antibiotic resistant bacteria in the environment. In Bangladesh, liquid discharge is directly released into the municipal sewage system and pollutes the surroundings water bodies/rivers. Liquid samples were collected from the three CWW discharge sites connected to DMCH (Dhaka Medical College Hospital) and from one control group non-connected to DMCH. About 32, 30 and 26 times higher ciprofloxacin, cefixime and multi-drug resistant bacterial count were found in CWW over control samples. Among the isolates, two Escherichia spp. isolates, denoted 26N and 28N, were found to be resistant against fluoroquinolone (MBC of Ciprofloxacin > 1024 μg/ml), cephalosporin, glycopeptide, monobactam, penicillin, tetracycline, rifampicin, macrolides, sulfonamide and nitrofuran classes of drugs and were also ESBL positive through phenotypic assay. Plasmid curing experiment detected possible plasmid mediated resistance of fluoroquinolone, cephalosporin, tetracycline, lincosamide and nitrofuran classes of antibiotics. Phylogenetically, isolate 26N and 28N were characterized as Escherichia coli and Escherichia fergusonii. These MDR and ESBL positive bacteria are potent to disseminate resistant determinants in the surrounding environments.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Adnan, N. , Sultana, M. , Islam, O. , Nandi, S. and Hossain, M. (2013) Characterization of Ciprofloxacin resistant Extended Spectrum β-Lactamase (ESBL) producing Escherichia spp. from clinical waste water in Bangladesh. Advances in Bioscience and Biotechnology, 4, 15-23. doi: 10.4236/abb.2013.47A2003.

References

[1] Levy, S.B. (2002) The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. Journal of Antimicrobial Chemotherapy, 49, 25-30. doi:10.1093/jac/49.1.25
[2] Okeke, I.N., Lamikanra, A. and Edelman, R. (1999) Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerging Infectious Diseases, 5, 18-27. doi:10.3201/eid0501.990103
[3] Sahm, D.F., et al. (2001) Need for annual surveillance of antimicrobial resistance in Streptococcus pneumoniae in the United States: 2-year longitudinal analysis. Antimicrobial Agents and Chemotherapy, 45, 1037-1042. doi:10.1128/AAC.45.4.1037-1042.2001
[4] Lockhart, S.R., et al. (2007) Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. Journal of Clinical Microbiology, 45, 33523359. doi:10.1128/JCM.01284-07
[5] Barry, A.L., et al. (1990) Prevalence of fluoroquinoloneresistant bacterial isolates in four medical centers during the first quarter of 1990. European Journal of Clinical Microbiology & Infectious, 9, 906-908. doi:10.1007/BF01967511
[6] Bazile-Pham-Khac, S., et al. (1996) Resistance to fluoroquinolones in Escherichia coli isolated from poultry. Antimicrobial Agents and Chemotherapy, 40, 1504-1507.
[7] Thomson, C.J. (1999) The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: A 10-year perspective. Journal of Antimicrobial Chemotherapy, 43, 31-40. doi:10.1093/jac/43.suppl_1.31
[8] Toltzis, P. (2004) Antibiotic-resistant gram-negative bacteria in hospitalized children. Clinics in Laboratory Medicine, 24, 363-380. doi:10.1016/j.cll.2004.03.001
[9] Schlackow, I., et al. (2012) Increasing incidence of Escherichia coli bacteraemia is driven by an increase in antibiotic-resistant isolates: Electronic database study in Oxfordshire 1999-2011. Journal of Antimicrobial Chemotherapy, 67, 1514-1524. doi:10.1093/jac/dks082
[10] Diwan, V., et al. (2012) Identification of extended-spectrum beta-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. Journal of Antimicrobial Chemotherapy, 67, 857-859. doi:10.1093/jac/dkr564
[11] Liu, B.T., et al. (2012) Plasmid-mediated quinolone resistance determinant qepA1 and extended-spectrum betalactamase gene blaCTX-M-14 co-located on the same plasmid in two Escherichia coli strains from China. Journal of Medical Microbiology, 61, 603-605. doi:10.1099/jmm.0.039347-0
[12] Tausova, D., et al. (2012) Escherichia coli with extendedspectrum beta-lactamase and plasmid-mediated quinolone resistance genes in great cormorants and mallards in Central Europe. Journal of Antimicrobial Chemotherapy, 67, 1103-1107. doi:10.1093/jac/dks017
[13] Drlica, K. and Zhao, X. (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews, 61, 377-392.
[14] Akter, F., et al. (2012) Ciprofloxacin-resistant Escherichia coli in hospital wastewater of Bangladesh and prediction of its mechanism of resistance. World Journal of Microbiology and Biotechnology, 28, 827-834. doi:10.1007/s11274-011-0875-3
[15] Poole, K. (2005) Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 56, 20-51. doi:10.1093/jac/dki171
[16] Cavaco, L.M., et al. (2007) First detection of plasmidmediated quinolone resistance (qnrA and qnrS) in Escherichia coli strains isolated from humans in Scandinavia. Journal of Antimicrobial Chemotherapy, 59, 804805. doi:10.1093/jac/dkl554
[17] Tran, J.H. and Jacoby, G.A. (2002) Mechanism of plasmid-mediated quinolone resistance. Proceedings of the National Academy of Sciences of the United States of America, 99, 5638-5642. doi:10.1073/pnas.082092899
[18] Yamane, K., et al. (2007) New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrobial Agents and Chemotherapy, 51, 3354-3360. doi:10.1128/AAC.00339-07
[19] Tamang, M.D., et al. (2008) Plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in a Korean hospital. Antimicrobial Agents and Chemotherapy, 52, 4159-4162. doi:10.1128/AAC.01633-07
[20] Golet, E.M., et al. (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 37, 3243-3249. doi:10.1021/es0264448
[21] Martinez, J.L. (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157, 2893-2902. doi:10.1016/j.envpol.2009.05.051
[22] Kummerer, K. (2001) Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—A review. Chemosphere, 45, 957-969. doi:10.1016/S0045-6535(01)00144-8
[23] Brenner, D.J., et al. (2005) Bergey’s manual of systematic bacteriology. Springer.
[24] Bauer, A.W., et al. (1966) Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496.
[25] Jarlier, V., et al. (1988) Extended broad-spectrum betalactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Reviews of Infectious Diseases, 10, 867-878. doi:10.1093/clinids/10.4.867
[26] Birnboim, H.C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513-1523. doi:10.1093/nar/7.6.1513
[27] Macrina, F.L., et al. (1978) A multiple plasmid-containing Escherichia coli strain: Convenient source of size reference plasmid molecules. Plasmid, 1, 417-420. doi:10.1016/0147-619X(78)90056-2
[28] Tomoeda, M., et al. (1968) Effective elimination of drug resistance and sex factors in Escherichia coli by sodium dodecyl sulfate. Journal of Bacteriology, 95, 1078-1089.
[29] Brosius, J., et al. (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 75, 4801-4805. doi:10.1073/pnas.75.10.4801
[30] Lawrence, J.G. (2005) Horizontal and vertical gene transfer: the life history of pathogens. Contributions to Microbiology, 12, 255-271. doi:10.1159/000081699
[31] Hossain, M.A., et al. (1998) Increasing frequency of mecillinam-resistant shigella isolates in urban Dhaka and rural Matlab, Bangladesh: A 6-year observation. Journal of Antimicrobial Chemotherapy, 42, 99-102. doi:10.1093/jac/42.1.99
[32] Zuccato, E., et al. (2010) Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials, 179, 1042-1048. doi:10.1016/j.jhazmat.2010.03.110
[33] Ding, C. and He, J. (2010) Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology, 87, 925-941. doi:10.1007/s00253-010-2649-5
[34] Cabral, J.P. (2010) Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7, 3657-3703. doi:10.3390/ijerph7103657
[35] Rahman, M., et al. (2007) Increasing spectrum in antimicrobial resistance of Shigella isolates in Bangladesh: Resistance to azithromycin and ceftriaxone and decreased susceptibility to ciprofloxacin. Journal of Health, Population and Nutrition, 25, 158-167.
[36] Chaudhry, U., et al. (2002) Mutation patterns in gyrA and parC genes of ciprofloxacin resistant isolates of Neisseria gonorrhoeae from India. Sexually Transmitted Infections, 78, 440-444. doi:10.1136/sti.78.6.440
[37] Azmuda, N., et al. (2012) Evidence of interspecies O antigen gene cluster transfer between Shigella boydii 15 and Escherichia fergusonii. APMIS, 120, 959-966. doi:10.1111/j.1600-0463.2012.02926.x
[38] Rayamajhi, N., et al. (2011) Plasmid typing and resistance profiling of Escherichia fergusonii and other Enterobacteriaceae isolates from South Korean farm animals. Applied and Environmental Microbiology, 77, 3163-3166. doi:10.1128/AEM.02188-10
[39] Karah, N., et al. (2010) Plasmid-mediated quinolone resistance determinants qnr and aac(6’)-Ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. Diagnostic Microbiology and Infectious Disease, 66, 425-431. doi:10.1016/j.diagmicrobio.2009.12.004
[40] Hassan, W.M., Hashim, A. and Domany, R. (2012) Plasmid mediated quinolone resistance determinants qnr, aac (6’)-Ib-cr, and qep in ESBL-producing Escherichia coli clinical isolates from Egypt. Indian Journal of Medical Microbiology, 30, 442-447. doi:10.4103/0255-0857.103766

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.