Self-Cleaning Properties of Vanadium Doped TiO2 Sol-Gel Derived Thin Films

Abstract

In this study, vanadium doped TiO2 thin films were deposited on glass substrates using a sol-gel dip-coating process. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotometer were used to characterize the structural, chemical and the optical properties of the thin films. The photo-catalytic activities of films were investigated by methylene blue degradation. Water contact angle on the film surfaces was measured by a water contact angle analyzer. The results indicated that vanadium doping had a significant effect on the self-cleaning properties of TiO2 thin films.

Share and Cite:

M. Mokhtarimehr, A. Eshaghi and M. Pakshir, "Self-Cleaning Properties of Vanadium Doped TiO2 Sol-Gel Derived Thin Films," New Journal of Glass and Ceramics, Vol. 3 No. 3, 2013, pp. 87-90. doi: 10.4236/njgc.2013.33014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Sayilkan, M. Asilturk, N. Kiraz and E. Burunkaya, “Photocatalytic Antibacterial Performance of Sn4+-Doped TiO2 Thin Films on Glass Substrate,” Journal of Hazardous Materials, Vol. 162, No. 2, 2009, pp. 1309-1316. doi:10.1016/j.jhazmat.2008.06.043
[2] K. Guan, B. Lu and Y. Yin, “Enhanced Effect and Mechanism of SiO2 Addition in Super-Hydrophilic Property of TiO2 Films,” Journal of Surface and Coatings Technology, Vol. 173, No. 2, 2003, pp. 219-223. doi:10.1016/S0257-8972(03)00521-8
[3] A. Fujishima, X. Zhang and D. A. Tryk, “TiO2 Photocatalysis and Related Phenomena,” Surface Science Reports, Vol. 63, No. 12, 2008, pp. 515-582. doi:10.1016/j.surfrep.2008.10.001
[4] G. H. Takaoka, T. Nose and M. Kawashita, “Photocatalytic Properties of Cr-Doped TiO2 Films Prepared by Oxygen Cluster Ion Beam Assisted Deposition,” Vacuum, Vol. 83, No. 3, 2009, pp. 679-682. doi:10.1016/j.vacuum.2008.04.057
[5] J. Wang, Y. Lv, Z. Zhang, Y. Deng, L. Zhang, B. Liu, R. Xu and X. Zhang, “Sonocatalytic Degradation of Azo Fuchsine in the Presence of the Co-Doped and Cr-Doped Mixed Crystal TiO2 Powders and Comparison of Their Sonocatalytic Activities,” Journal of Hazardous Materials, Vol. 170, No. 1, 2009, pp. 398-404. doi:10.1016/j.jhazmat.2009.04.083
[6] Y. Chen, J. S. Xu and Z. G. G, “Recent Advances in Application of Biomimetic Superhydrophobic Surfaces,” Applied Surface Science, Vol. 24, No. 5, 2012, pp. 696-708.
[7] J. Arana, C. G. Cabo, J. M. Dona-Rodriguez, O. Gonzalez-Diaz, J.A. Herrera-Melian and J. Perez-Pena, “FTIR Study of Formic Acid Interaction with TiO2 and TiO2 Doped with Pd and Cu in Photocatalytic Processes,” Applied Surface Science, Vol. 239, No. 1, 2009, pp. 60-71.
[8] D. Luca, D. Mardare, F. Iacomi and C. M. Teodorescu, “Increasing Surface Hydrophilicity of Titania Thin Films by Doping,” Applied Surface Science, Vol. 252, No. 1, 2006, pp. 6122-6126. doi:10.1016/j.apsusc.2006.05.011
[9] R. Dholam, N. Patel, M. Adami and A. Miotello, “Hydrogen Production by Photocatalytic Water-Splitting Using Cr- or Fe-Doped TiO2 Composite Thin Films Photocatalyst,” International Journal of Hydrogen Energy, Vol. 34, No. 13, 2009, pp. 5337-5346. doi:10.1016/j.ijhydene.2009.05.011
[10] L. G. Devi and B. N. Murthy, “Photo-Catalytic Activity of TiO2 Doped with Zn2+ and V5+ Transition Metal Ions: Influence of Crystallite Size and Dopant Electronic Configuration on Photocatalytic Activity,” Materials Science and Engineering B, Vol. 166, No. 1, 2012, pp. 1-6. doi:10.1016/j.mseb.2009.09.008
[11] A. Eshaghi, M. Pakshir and R. Mozaffariiania, “Photoinduced Properties of Nanocrystalline TiO2 Sol-Gel Derived Thin Films,” Bulletin of Materials Science, Vol. 33, No. 4, 2010, pp. 365-369. doi:10.1007/s12034-010-0055-3
[12] A. Eshaghi, M. Pakshir and R. Mozaffarinia, “Preparation and Photo-Induced Superhydrophilicity of Composite TiO2-SiO2-In2O3 Thin Film,” Applied Surface Science, Vol. 256, No. 23, 2010, pp. 7062-7066. doi:10.1016/j.apsusc.2010.05.026
[13] Y. Abdi, M. Khalilian and E. Arzi, “Enhancement in Photo-Induced Hydrophilicity of TiO2/CNT Nanostructures by Applying Voltage,” Journal of Physics D, Vol. 165, No. 44, 2011, pp. 250-257.
[14] C. He, Y. Xiong and X. Zhu, “Improving Photo-Catalytic Activity of Cu-Loaded TiO2 Film Using a Pulse Anodic Bias,” Catalysis Communications, Vol. 4, No. 1, 2003, pp. 183-187. doi:10.1016/S1566-7367(03)00031-1
[15] A. Eshaghi and A. Eshaghi, “Self-Cleaning Properties of TiO2-SiO2-In2O3 Nano-Composite Thin Film,” Korean Chemistry, Vol. 32, No. 11, 2011, pp. 3991-3995.
[16] R. Dholam, N. Patel, M. Adami and A. Miotello, “Hydrogen Production by Photo-Catalytic Water-Splitting Using Cr or Fe-Doped TiO2 Composite Thin Films Photo-Catalysts,” International Journal of Hydrogen Energy, Vol. 34, No. 13, 2009, pp. 5337-5346. doi:10.1016/j.ijhydene.2009.05.011
[17] J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang and L. Zhang, “Hydrothermal Doping Method for Preparation of Cr3+-TiO2 Photo-Catalysts with Concentration Gradient Distribution of Cr3+,” Applied Catalysis B: Environmental, Vol. 62, No. 1, 2006, pp. 329-335. doi:10.1016/j.apcatb.2005.08.013

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.