Share This Article:

Identification and Characterization of Lactic Acid Bacteria Isolated from Fermented Rice Bran Product

Abstract Full-Text HTML Download Download as PDF (Size:784KB) PP. 265-272
DOI: 10.4236/aim.2013.33038    5,272 Downloads   10,112 Views   Citations

ABSTRACT

To analyze the microflora in fermented rice bran product, bacterial colonies were grown under various conditions. Although cultivation temperature did not affect the number of bacterial colonies formed on agar plates, twice as many colonies formed under aerobic as under anaerobic conditions. All colonies appearing on the plates showed acid production. Based on 16S rRNA sequence analysis, nearly all of the bacteria in the fermented product were highly similar (>99%) to Lactobacillus johnsonii. In addition, several Bacillus cereus and unidentified Lactobacillus strains that grew only under anaerobic conditions at 30℃ were seen. Random Amplified Polymorphic DNA (RAPD)-PCR analysis showed the amplified patterns of all isolates to differ substantially from the reference strain L. johnsonii. We conclude that L. johnsonii-related strains predominate in fermented rice bran product, and that these bacteria produce lactic acid to decrease the pH of the fermented product. Several novel Lactobacillus strains may also occur in this environment.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Doi, O. Phuong, F. Kawatou, Y. Nagayoshi, Y. Fujino and T. Ohshima, "Identification and Characterization of Lactic Acid Bacteria Isolated from Fermented Rice Bran Product," Advances in Microbiology, Vol. 3 No. 3, 2013, pp. 265-272. doi: 10.4236/aim.2013.33038.

References

[1] J. Nakayama, H. Hoshiko, M. Fukuda, H. Tanaka, N. Sakamoto, S. Tanaka, K. Ohue, K. Sakai and K. Sonomoto, “Molecular Monitoring of Bacterial Community Structure in Long-Aged Nukadoko: Pickling Ded of Fermented Rice Bran Dominated by Slow-Growing Lactobacilli,” Journal of Bioscience and Bioengineering, Vol. 104, No. 6, 2007, pp. 481-489. doi:10.1263/jbb.104.481
[2] C. G. Schmidt and E. B. Furlong, “Effect of Particle Size and Ammonium Sulfate Concentration on Rice Bran Fermentation with the Fungus Rhizopus oryzae,” Bioresource Technology, Vol. 123, 2012, pp. 36-41. doi:10.1016/j.biortech.2012.07.081
[3] J. H. Koh, K. W. Yu and H. J. Suh, “Biological Activities of Saccharomyces cerevisiaeand Fermented Rice Bran as Feed Additives,” Letters in Applied Microbiology, Vol. 35, No. 1, 2002, pp. 47-51. doi:10.1046/j.1472-765X.2002.01131.x
[4] N. Sakamoto, S. Tanaka, K. Sonomoto and J. Nakayama, “16S rRNA Pyrosequencing-Based Investigation of the Bacterial Community in Nukadoko, a Pickling Bed of Fermented Rice Bran,” International Journal of Food Microbiology, Vol. 144, No. 3, 2011, pp. 352-359. doi:10.1016/j.ijfoodmicro.2010.10.017
[5] O. O. Oduguwa, M. O. Edema and A. O. Ayenia, “Physico-Chemical and Microbiological Analyses of Fermented Corn Cob, Rice Bran and Cowpea Husk for Use in Composite Rabbit Feed,” Bioresource Technology, Vol. 99, No. 6, 2008, pp. 1816-1820. doi:10.1016/j.biortech.2007.03.036
[6] S. Yokoyama, J. Hiramatsu and K. Hayakawa, “Production of Gamma-Aminobutyric Acid from Alcohol Distillery Lees by Lactobacillus brevis IFO-12005,” Journal of Bioscience and Bioengineering, Vol. 93, No. 1, 2002, pp. 95-97. doi:10.1016/S1389-1723(02)80061-5
[7] K. Hiwatashi, A. Narisawa, M. Hokari and K. Toeda, “Antihypertensive Effect of Honey-Based Beverage Containing Fermented Rice Bran in Spontaneously Hypertensive Rats,” Journal of The Japanese Society for Food Science and Technology, Vol. 57, No. 1, 2010, pp. 40-43. doi:10.3136/nskkk.57.40
[8] I. Yamada, “Studies on Growth and Formation of Capsule of Bacterial Culture by Rice Bran,” Vol. 3, Kyushu University, Kyushu, 2004.
[9] D. G. Burns, H. M. Camakaris, P. H. Janssen and M. L. Dyall-Smith, “Combined Use of Cultivation-Dependent and Cultivation-Independent Methods Indicates that Members of Most Haloarchaeal Groups in an Australian Crystallizer Pond Are Cultivable,” Applied and Environmental Microbiology, Vol. 70, No. 9, 2004, pp. 5258-5265. doi:10.1128/AEM.70.9.5258-5265.2004
[10] R. Temmerman, G. Huys and J. Swings, “Identification of Lactic Acid Bacteria: Culture-Dependent and Culture-Independent Methods,” Trends in Food Science and Technology, Vol. 15, No. 7-8, 2004, pp. 348-359. doi:10.1016/j.tifs.2003.12.007
[11] L. A. Sarmiento-Rubiano, B. Berger, D. Moine, M. Zúniga, G. Pérez-Martínez and M. J. Yebra, “Characterization of a Novel Lactobacillus Species Closely Related to Lactobacillus johnsonii Using a Combination of Molecular and Comparative Genomics Methods,” BMC Genomics, Vol. 11, 2010, p. 504. doi:10.1186/1471-2164-11-504
[12] H. Sato, M. Torimura, M. Kitahara, M. Ohkuma, Y. Hotta and H. Tamura, “Characterization of the Lactobacillus casei group Based on the Profiling of Ribosomal Proteins Coded in S10-spc-alpha Operons as Observed by MALDI-TOF MS,” Systematic and Applied Microbiology, Vol. 35, No. 7, 2012, pp. 447-454. doi:10.1016/j.syapm.2012.08.008
[13] K. Doi, Y. Nishizaki, Y. Fujino, T. Ohshima, S. Ohmomo and S. Ogata, “Pediococcus lolii sp. nov., Isolated from Ryegrass Silage,” International Journal of Systematic and Evolutionary Microbiology, Vol. 59, No. 5, 2009, pp. 1007-1010. doi:10.1099/ijs.0.005793-0
[14] A. Michinaka and T. Fujii, “Efficient and Direct Identification of Fructose Fermenting and Non-Fermenting Bacteria from Calf Gut Microbiota Using Stable Isotope Probing and Modified T-RFLP,” Journal of General and Applied Microbiology, Vol. 58, No. 4, 2012, pp. 297-307. doi:10.2323/jgam.58.297
[15] K. Gori, M. Ryssel, N. Arneborg and L. Jespersen, “Isolation and Identification of the Microbiota of Danish Farmhouse and Industrially Produced Surface-Ripened Cheeses,” Microbial Ecology, Vol. 65, No. 3, 2013, pp. 602-615. doi:10.1007/s00248-012-0138-3
[16] Y. Fujino, R. Kawatsu, F. Inagaki, A. Umeda, T. Yokoyama, Y. Okaue, S. Iwai, S. Ogata, T. Ohshima and K. Doi, “Thermus thermophilus TMY Isolated from Silica Scale Taken from a Geothermal Power Plant,” Journal of Applied Microbiology, Vol. 104, No. 1, 2008, pp. 70-78.
[17] M. Kozaki, T. Uchimura and S. Okada, “Experimental Manual of Lactic Acid Bacteria,” Asakurasyoten, Tokyo, 1992.
[18] M. Kimura, “A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences,” Journal of Molecular Evolution, Vol. 16, No. 2, 1980, pp. 111-120. doi:10.1007/BF01731581
[19] D. Kim and G. D. Han, “High Hydrostatic Pressure Treatment Combined with Enzymes Increases the Extractability and Bioactivity of Fermented Rice Bran,” Innovative Food Science and Emerging Technologies, Vol. 16, 2012, pp. 191-197. doi:10.1016/j.ifset.2012.05.014
[20] W. Messens, J. Verluyten, F. Leroy and Luc De Vuyst, “Modelling Growth and Bacteriocin Production by Lactobacillus curvatus LTH 1174 in Response to Temperature and pH Values Used for European Sausage Fermentation Processes,” International Journal of Food Microbiology, Vol. 81, No. 1, 2003, pp. 41-52. doi:10.1016/S0168-1605(02)00168-X
[21] M. Mataragas, J. Metaxopoulos, M. Galiotou and E. H. Drosinos, “Influence of pH and Temperature on Growth and Bacteriocin Production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442,” Meat Science, Vol. 64, No. 3, 2003, pp. 265-271. doi:10.1016/S0309-1740(02)00188-2
[22] W. S. Tan, M. F. Budinich, R. Ward, J. R. Broadbent and J. L. Steele, “Optimal Growth of Lactobacillus casei in a Cheddar Cheese Ripening Model System Requires Exogenous Fatty Acids,” Journal of Dairy Science, Vol. 95, No. 4, 2012, pp. 1680-1689.
[23] T. Fujisawa, Y. Benno, T. Yaeshima, and T. Mitsuoka, “Taxonomic Study of the Lactobacillus acidophilus Group, with Recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and Synonymy of Lactobacillus acidophilus Group A3 (Johnson et al., 1980) with the Type Strain of Lactobacillus amylovorus (Nakamura 1981),” International Journal of Systematic and Evolutionary Microbiology, Vol. 42, No. 3, 1992, pp. 487-491.
[24] W. P. Hammes and C. Hertel, “The Genera Lactobacillus and Carnobacterium,” In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt, Eds., The Prokaryotes, Vol. 4, 3rd Edition, Springer, New York, pp. 320-403.
[25] E. Zubaidah, M. Nurcholis, S. N. Wulan and A. Kusuma, “Comparative Study on Synbiotic Effect of Fermented Rice Bran by Probiotic Lactic Acid Bacteria Lactobacillus casei and Newly Isolated Lactobacillus plantarum B2 in Wistar Rats,” APCBEE Procedia, Vol. 2, 2012, pp. 170-177. doi:10.1016/j.apcbee.2012.06.031
[26] P. Vandamme, B. Pot, M. Gillis, P. de Vos, K. Kersters, and J. Swings, “Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics,” Microbiological Reviews. Vol. 60, No. 2, 1996, pp. 407-438.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.