Microwave Plasma Treatment for Catalyst Preparation: Application to Alumina Supported Silver Catalysts for SCR NOx by Ethanol

Abstract

Thermal treatment either in the presence of oxygen (calcination) or of a reducing agent (reduction) result is all the time a key issue within the preparation of a catalyst. In this work, a microwave plasma treatment was chosen as an alternative to typical calcinations, because it is a more energy efficient process. Thus, a Microwave Fluidized Bed Plasma reactor (MFBP) was employed in catalyst synthesis process under different gas compositions, such as argon and argon/oxygen mixtures over g-alumina supported silver catalysts, which are generally used for selective reduction of NOx by ethanol. After the first catalytic tests performed in the presence of plasma treated catalyst, it can be concluded that plasma treatment process represents an interesting alternative to conventional calcination during catalyst synthesis, resulting in a more sustainable process, moreover in view of its industrial application. In order to understand the particular effect of plasma treatment, the catalysts submitted to this treatment were carefully characterized by means of thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and UV-VIS-NIR.

Share and Cite:

M. Foix, C. Guyon, M. Tatoulian and P. Costa, "Microwave Plasma Treatment for Catalyst Preparation: Application to Alumina Supported Silver Catalysts for SCR NOx by Ethanol," Modern Research in Catalysis, Vol. 2 No. 3, 2013, pp. 68-82. doi: 10.4236/mrc.2013.23011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C.-J. Liu, G. P. Vissokov and W. L. Jang Ben, “On the Plasma-Chemical Synthesis and/or Regeneration of Ultradispersed Catalysts for Ammonia Production,” Catalysis Today, Vol. 72, No. 3-4, 2002, pp. 173-184. doi:10.1016/S0920-5861(01)00493-X
[2] F. Pinna, “Supported Metal Catalysts Preparation,” Catalysis Today, Vol. 41, No. 1, 1998, pp. 129-137. doi:10.1016/S0920-5861(98)00043-1
[3] M. Campanati, G. Fornasari and A. Vaccari, “Fundamentals in the Preparation of Heterogeneous Catalysts,” Catalysis Today, Vol. 77, No. 4, 2003, pp. 299-314. doi:10.1016/S0920-5861(02)00375-9
[4] K. Kiyokawa, H. Matsuoka, A. Itou, K. Hasegawa and K. Sugiyama, “Decomposition of Inorganic Gases in an Atmospheric Pressure Non-Equilibrium Plasma,” Surface and Coating Technology, Vol. 112, No. 1, 1999, pp. 25-28. doi:10.1016/S0257-8972(98)00762-2
[5] X. T. Deng, J. J. Shi and M. G. Kong, “Protein Destruction by a Heliumatmospheric Pressure Glow-Discharge: Capability and Mechanisms,” Journal of Applied Physics, Vol. 101, No. 7, 2007, pp. 074701-074703. doi:10.1063/1.2717576
[6] J. F. Kolb, et al., “Cold Atmospheric Pressure Air Plasma jet for Medical Applications,” Applied Physics Letters, Vol. 92, No. 24, 2008, pp. 241501-241503. doi:10.1063/1.2940325
[7] G. P. Vissokov, K. D. Manolovaet and L. B. Brakalov, “Chemical Preparation of Ultra-Fine Aluminium Oxide by Electric Arc Plasma,” Journal of Materials Science, Vol. 16, No. 6, 1981, pp. 1716-1719. doi:10.1007/BF02396898
[8] W. Xia, O. F.-K. Schlüter, C. Liang, M. W. E. Van den Berg, M. Guraya and M. Muhler, “The Synthesis of Structured Pd/C Hydrogenation Catalysts by the Chemical Vapor Deposition of Pd(allyl)Cp onto Functionalized Carbon Nanotubes Anchored to Vapor Grown Carbon Microfibers,” Catalysis Today, Vol. 102-103, 2005, pp. 34-39. doi:10.1016/j.cattod.2005.02.002
[9] L. Rouleau, R. Bacaud and M. Breysse, “A Plasma-Produced Dispersed and Disposable Supported Nickel Catalyst for Hydroconversion of Heavy Oils: I. Preparation and Characterization,” Applied Catalysis A: General, Vol. 104, No. 2, 1993, pp. 137-147. doi:10.1016/0926-860X(93)85094-6
[10] M. Karches, C. Bayer and P. Rudolf von Rohr, “A Circulating Fluidised Bed for Plasma-Enhanced Chemical Vapor Deposition on Powder Sat Low Temperatures,” Surface and Coatings Technology, Vol. 116-119, 1999, pp. 879-885. doi:10.1016/S0257-8972(99)00194-2
[11] M. Foix, C. Guyon, M. Tatoulian and P. Da Costa, “Study of the Use of Fluidized Bed Plasma Reactors for the Treatment of Alumina Supported Palladium Catalyst: Application for SCR NOx by CH4 in Stationary Sources,” Catalysis Communications, Vol. 12, No. 1, 2010, pp. 20-24. doi:10.1016/j.catcom.2010.05.022
[12] R. Jafari, M. Tatoulian, W. Morscheidt and F. Arefi-Khonsari, “Stable Plasma Polymerized Acrylic Acid Coating Deposited on Polyethylene (PE) Films in a Low Frequency Discharge (70 kHz),” Reactive and Functional Polymers, Vol. 66, No. 12, 2006, pp. 1757-1765. doi:10.1016/j.reactfunctpolym.2006.08.006
[13] C. J. Liu, K. Yu, Y. P. Zhang, X. Zhu, F. He and B. Eliasson, “Characterization of Plasma Treated Pd/HZSM-5 Catalyst for Methane Combustion,” Applied Catalysis, Vol. 47, No. 2, 2004, pp. 95-100. doi:10.1016/j.apcatb.2003.07.005
[14] Y. Zhao, Y. X. Pan, L. Cui and C. J. Liu, “Carbon Nanotube Formation over Plasma Reduced Pd/HZSM-5,” Diamond and Related Materials, Vol. 16, No. 2, 2007, pp. 229-235. doi:10.1016/j.diamond.2006.05.012
[15] R. Bartolomeu, M. Foix, A. Fernandes, M. Tatoulian, M. F. Ribeiro, C. Henriques and P. Da Costa, “Fluidized Bed Plasma for Pre-Treatment of Co-Ferrierite Catalysts: An Approach to NOx Abatement,” Catalysis Today, Vol. 176, No. 1, 2011, pp. 234-238. doi:10.1016/j.cattod.2010.12.051
[16] J. P. Breen, R. Burch and H. M. Coleman, “Metal-Catalysed Steam Reforming of Ethanol in the Production of Hydrogen for Fuel Cell Applications,” Applied Catalysis B: Environmental, Vol. 39, No. 1, 2002, pp. 65-74. doi:10.1016/S0926-3373(02)00075-9
[17] A. Musi, P. Massiani, D. Brouri, J. M. Trichard and P. Da Costa, “On the Characterisation of Silver Species for SCR of NOx with Ethanol,” Catalysis Letters, Vol. 128, No. 1-2, 2009, pp. 25-30. doi:10.1007/s10562-008-9694-z
[18] F. Bretagnol, M. Tatoulian, F. Arefi-Khonsari, G. Lorang and J. Amouroux, “Surface Modification of Polyethylene Powder by Nitrogen and Ammonia Low Pressure Plasma in a Fluidized Bed Reactor,” Reactive and Functional Polymers, Vol. 61, No. 2, 2004, pp. 221-232. doi:10.1016/j.reactfunctpolym.2004.06.003
[19] M. Tatoulian, F. Bretagnol, F. Arefi-Konsari, J. Amouroux, O. Bouloussa, F. Rondelez, A. John Paul and R. Mitchell, “Plasma Deposition of Allylamine on Polymer Powders in a Fluidized Bed Reactor,” Plasma Processes and Polymers, Vol. 2, No. 1, 2005, pp. 38-44. doi:10.1002/ppap.200400029
[20] E. Sayah, D. Brouri, Y. H. Wu, A. Musi, P. Da Costa and P. Massiani, “A TEM and UV-Visible Study of Silver Reduction by Ethanol in Ag-Alumina Catalysts,” Applied Catalysis A: General, Vol. 406, No. 1, 2011, pp. 94-101. doi:10.1016/j.apcata.2011.08.016
[21] B. M. Weckhuysen, A. A. Verberckmoes, J. Debaere, K. Ooms, I. Langhans and R. A. Schoonheydt, “In Situ UV-Vis Diffuse Reflectance Spectroscopy—On Line Activity Measurements of Supported Chromium Oxide Catalysts: Relating Isobutane Dehydrogenation Activity with Cr-Speciation via Experimental Design,” Journal of Molecular Catalysis A: Chemical, Vol. 151, No. 1-2, 2000, pp. 115-131. doi:10.1016/S1381-1169(99)00259-9
[22] P. J. M. Dijkgraaf, H. A. M. Duisters, B. F. M. Kuster and K. Van der Wiele, “Deactivation of Platinum Catalysts by Oxygen: 2. Nature of the Catalyst Deactivation,” Journal of Catalysis, Vol. 112, No. 2, 1988, pp. 337-344. doi:10.1016/0021-9517(88)90147-9
[23] J. C. Martína, S. Suarezb, M. Yatesa and P. ávila, “Pd/γ-Al2O3 Monolithic Catalysts for NOx Reduction with CH4 in Excess of O2: Effect of Precursor Salt,” Chemical Engineering Journal, Vol. 150, No. 1, 2009, pp. 8-14. doi:10.1016/j.cej.2008.11.050
[24] A. Keshavaraja, X. She and M. Flytzani-Stephanopoulos, “Selective Catalytic Reduction of NO with Methane over Ag-Alumina Catalysts,” Applied Catalysis B, Vol. 27, No. 1, 2000, pp. L1-L9. doi:10.1016/S0926-3373(00)00131-4
[25] N. Bogdanchikova, F. C. Meunier, M. Avaloj-Borja, J. P. Breen and A. Pestrykov, “On the Nature of the Silver Phases of Ag/Al2O3 Catalysts for Reactions Involving Nitric Oxide,” Applied Catalysis B: Environmental, Vol. 36, No. 4, 2002, pp. 287-297. doi:10.1016/S0926-3373(01)00286-7
[26] X. She and M. Flytzani-Stephanopoulos, “The Role of Ag-O-Al Species in Silver-Alumina Catalysts for the Selective Catalytic Reduction of NOx with Methane,” Journal of Catalysis, Vol. 237, No. 1, 2006, pp. 79-93. doi:10.1016/j.jcat.2005.09.036
[27] I. H. Son, M. C. Kim, H. L. Koh and K. L. Kim, “On the Promotion of Ag/γ-Al2O3 by Cs for the SCR of NO by C3H6,” Catalysis Letters, Vol. 75, No. 3-4, 2001, pp. 191-197. doi:10.1023/A:1016796022644
[28] R. Brosius, K. Arve, M. H. Groothaert and J. A. Martens, “Adsorption Chemistry of NOx on Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx Using Hydro Carbons,” Journal of Catalysis, Vol 231, No. 2, 2005, pp. 344-353. doi:10.1016/j.jcat.2005.01.034
[29] M. Martinez-Arias, M. Fernández-Garc??a, A. Iglesias-Juez, J. A. Anderson, J. C. Conesa and J. Soria, “Study of the Lean NOx Reduction with C3H6 in the Presence of Water over Silver/Alumina Catalysts Prepared from Inverse Microemulsions,” Applied Catalysis B: Environmental, Vol. 28, No. 1, 2000, pp. 29-41. doi:10.1016/S0926-3373(00)00160-0
[30] C. Bosch Ojeda and F. Sánchez Rojas, “Determination of Rhodium: Since the Origins Until Today: ICP-OES and ICP-MS,” Talanta, Vol. 71, No. 1, 2007, pp. 1-12. doi:10.1016/j.talanta.2006.04.024
[31] J. L. Hueso, J. Cotrino, A. Caballero, J. P. Espinós and A. R. González-Elipe, “Plasma Catalysis with Perovskite-Type Catalysts for the Removal of NO and CH4 from Combustion Exhausts,” Journal of Catalysis, Vol. 247, No. 2, 2007, pp. 288-297. doi:10.1016/j.jcat.2007.02.006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.