Share This Article:

Genetic and Environmental Etiology of Infant Hemodynamic Response to Speech Stimuli: A Near-Infrared Spectroscopy Study of Twins

Abstract Full-Text HTML Download Download as PDF (Size:171KB) PP. 14-18
DOI: 10.4236/psych.2013.46A2003    3,748 Downloads   4,972 Views  

ABSTRACT

For adults and children, genetic and environmental factors are known to affect brain structure and neural activity necessary for conducting various cognitive tasks. However, little is known regarding genetic and environmental contributions to individual differences in neural activity during the first two years of life. Concentrations of oxygenated and deoxygenated hemoglobin were measured bilaterally over temporal areas of 7 monozygotic and 17 dizygotic twin pairs using near-infrared spectroscopy. Results showed that environmental influences on the concentration of hemoglobin were larger than for genetic influences. Significant genetic and environmental influences were detected in different temporal areas. We discuss the genetic and environmental influences on the hemodynamic response to speech stimuli during the first two years of life.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Suzuki, K. & Ando, J. (2013). Genetic and Environmental Etiology of Infant Hemodynamic Response to Speech Stimuli: A Near-Infrared Spectroscopy Study of Twins. Psychology, 4, 14-18. doi: 10.4236/psych.2013.46A2003.

References

[1] Alarcón, M., Plomin, R., Fulker, D. W., Corley, R., & DeFries, J. C. (1998). Multivariate path analysis of specific cognitive abilities data at 12 years of age in the colorado adoption project. Behavior Genetics, 28, 255-264. doi:10.1023/A:1021667213066
[2] Ando, J., Nonaka, K., Ozaki, K., Sato, N., Fujisawa, K. K., Suzuki, K., & Ooki, S. (2006). The Tokyo twin cohort project: Overview and initial findings. Twin Research and Human Genetics, 9, 817-826. doi:10.1375/twin.9.6.817
[3] Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., & Fox, J. (2011). OpenMx: An open source extended structural equation modeling framework. Psychometrika, 76, 306-317. doi:10.1007/s11336-010-9200-6
[4] Bortfeld, H., Fava, E., & Boss, D. A. (2009). Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy. Developmental Neuropsychology, 34, 52-65. doi:10.1080/87565640802564481
[5] Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Naatanen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1, 351-353. doi:10.1038/1561
[6] Chiron, C., Jambaque, I., Nabbout, R., Lounes, R., Syrota, A., & Dulac, O. (1997). The right brain hemisphere is dominant in human infants. Brain, 120, 1057-1065. doi:10.1093/brain/120.6.1057
[7] Conboy, B. T., & Kuhl, P. K. (2011). Impact of second-language experience in infancy: Brain measures of first- and second-language speech perception. Developmental Science, 14, 242-248.
[8] Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., Mériaux, S., Roche, A., Sigman, M., & Dehaene, S. (2006). Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proceedings of the National Academy of Sciences of the United States of America, 14240-14245. doi:10.1073/pnas.0606302103
[9] Gilmore, J. H., Schmitt, J. E., Knickmeyer, R. C., Smith, J. K., Lin, W., Styner, M., & Neale, M. C. (2010). Genetic and environmental contributions to neonatal brain structure: A twin study. Human Brain Mapping, 8, 1174-1182.
[10] Homae, F., Watanabe, H., Nakano, T., & Taga, G. (2007). Prosodic processing in the developing brain. Neuroscience Research, 59, 29-39. doi:10.1016/j.neures.2007.05.005
[11] Jansen, A., Lohmann, H., Scharfe, S., Sehlmeyer, C., Deppe, M., & Knecht, S. (2007). The association between scalp hair-whorl direction, handedness and hemipheric language dominance: Is there a common genetic basis of lateralization? NeuroImage, 35, 853-861. doi:10.1016/j.neuroimage.2006.12.025
[12] Kato, T. (2004). Principle and technique of NIRS-Imaging for human brain FORCE: Fast-oxygen response in capillary event. International Congress Series, 1270, 85-90. doi:10.1016/j.ics.2004.05.052
[13] Knecht, S., Drager, B., Bobe, L., Lohmann, H., Floel, A., Ringelstein, E.-B., & Henningsen, H. (2000). Handedness and hemispheric language dominance in healthy humans. Brain, 123, 2512-2518. doi:10.1093/brain/123.12.2512
[14] Kotilahti, K., Nissila, I., Nasi, T., Lipiainen, L., Noponen, T., Merilainen, P., & Fellman, V. (2010). Hemodynamic responses to speech and music in newborn infants. Human Brain Mapping, 31, 595-603.
[15] Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M., Lerch, J. P., & Giedd, J. N. (2009). Differences in genetic and environmental influence on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30, 164-174. doi:10.1002/hbm.20494
[16] Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y., & Koizumi, H. (1995). Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Medical Physics, 22, 1997-2005. doi:10.1118/1.597496
[17] Minagawa-Kawai, Y., Cristià, A., & Dupoux, E. (2011). Cerebral lateralization and early speech acquisition: A developmental scenario. Developmental Cognitive Neuroscience, 1, 217-232. doi:10.1016/j.dcn.2011.03.005
[18] Neale, M. C., & Maes, H. H. M. (2004). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Publisher.
[19] Novak, G. P., Kurtzberg, D., Kreuzer, J. A., & Vaughan Jr., H. G. (1989). Cortical responses to speech sounds and their formants in normal infants: Maturational sequence and spatiotemporal analysis. Electroencephalography and Clinical Neurophysiology, 73, 295-305. doi:10.1016/0013-4694(89)90108-9
[20] Ooki, S., & Asaka, A. (2004). Zygosity diagnosis in young twins by questionnaire for twins’ mothers and twins’ self-reports. Twin Research and Human Genetics, 7, 5-12.
[21] Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112, 713-719. doi:10.1016/S1388-2457(00)00527-7
[22] Rowe, M. L., & Goldn-Meadow, S. (2009). Differences in early gesture explain SES disparities in child vocabulary size at school entry. Science, 323, 951-953. doi:10.1126/science.1167025
[23] Sato, T., Ito, M., Suto, T., Kameyama, M., Suda, M., Yamagishi, Y., & Mikuni, M. (2007). Time courses of brain activation and their implications for function: A multichannel near-infrared spectroscopy study during finger tapping. Neuroscience Research, 58, 297-304. doi:10.1016/j.neures.2007.03.014
[24] Van Hulle, C. A., Goldsmith, H. H., & Lemery, K. S. (2004). Genetic, environmental, and gender effects on individual differences in toddler expressive language. Journal of Speech, Language, and Hearing Research, 47, 904-912. doi:10.1044/1092-4388(2004/067)

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.