Share This Article:

Charged Gravastar in a Dark Energy Universe

Abstract Full-Text HTML Download Download as PDF (Size:570KB) PP. 869-878
DOI: 10.4236/jmp.2013.46118    5,935 Downloads   7,408 Views   Citations

ABSTRACT

Here we constructed a charged gravastar model formed by an interior de Sitter spacetime, a charged dynamical infinitely thin shell with an equation of state and an exterior de Sitter-Reissner-Nordstrom spacetime. We find that the presence of the charge is crucial to the stability of these structures. It can as much favor the stability of a bounded excursion gravastar, and still converting it in a stable gravastar, as make disappear a stable gravastar, depending on the range of the charge considered. There is also formation of black holes and, above certain values, the presence of the charge allows the formation of naked singularity. This is an important example in which a naked singularity emerges as a consequence of unstabilities of a gravastar model, which reinforces that gravastar is not an alternative model to black hole.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Brandt, R. Chan, M. Silva and P. Rocha, "Charged Gravastar in a Dark Energy Universe," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 869-878. doi: 10.4236/jmp.2013.46118.

References

[1] R. M. Wald, Living Reviews in Relativity, Vol. 4, 2001, p. 6. [arXiv:gr-qc/9912119]
[2] M. A. Abramowicz, W. Kluzniak and J.-P. Lasota, Astronomy & Astrophysics, Vol. 396, 2002, pp. L31-34. doi:10.1051/0004-6361:20021645
[3] G. Chapline, “Dark Energy Stars and AdS/CFT,” Talk at the 12th Marcel Grossman Meeting, 2009. [arXiv:gr-qc/0907.4397]
[4] G. Chapline, E. Hohlfeld, R. B. Laughlin and D. I. Santiago, International Journal of Modern Physics A, Vol. 18, 2003, p. 3587. [arXiv:gr-qc/0012094]. doi:10.1142/S0217751X03016380
[5] T. Vachaspati, “Black Stars and Gamma Ray Bursts,” arXiv:0706.1203
[6] M. Petri, “Charged Holostars,” 2003. gr-qc/0306068
[7] M. Petri, “Compact Anisotropic Stars with Membrane: A New Class of Exact Solutions to the Einstein Field Equations,” 2003. gr-qc/0306063.
[8] M. Petri, “The Holographic Solution: Why General Relativity must Be Understood in Terms of Strings,” 2004. gr-qc/0405007
[9] M. Petri, “Holostar thermodynamics,” 2003. gr-qc/0306067
[10] M. Petri, “Are We Living in a String Dominated Universe?” 2004. gr-qc/0405011.
[11] M. Petri, “On the Origin of the Matter-Antimatter Asymmetry in Self-Gravitating Systems at Ultra-High Temperatures,” 2004. gr-qc/0405010.
[12] P. O. Mazur and E. Mottola, “Gravitational Condensate Stars: An Alternative to Black Holes,” Proceedings of the National Academy of Sciences, Vol. 101, 2004, p. 9545. [arXiv:gr-qc/0407075]
[13] M. Visser and D. L. Wiltshire, Classical and Quantum Gravity, Vol. 21, 2004, p. 1135. [arXiv:gr-qc/0310107] doi:10.1088/0264-9381/21/4/027
[14] P. Rocha, A. Y. Miguelote, R. Chan, M. F. da Silva, N. O. Santos and A. Wang, Journal of Cosmology and Astroparticle Physics, Vol. 6, 2008, p. 25. [arXiv:gr-qc/08034200] doi:10.1088/1475-7516/2008/06/025
[15] P. Rocha, R. Chan, M. F. da Silva and A. Wang, Journal of Cosmology and Astroparticle Physics, Vol. 11, 2008, p. 10. [arXiv:gr-qc/08094879] doi:10.1088/1475-7516/2008/11/010
[16] R. Chan, M. F. da Silva, P. Rocha and A. Wang, Journal of Cosmology and Astroparticle Physics, Vol. 3, 2009, p. 10. [arXiv:gr-qc/08124924] doi:10.1088/1475-7516/2009/03/010
[17] R. Chan, M. F. A. da Silva and P. Rocha, Journal of Cosmology and Astroparticle Physics, Vol. 12, 2009, p. 17. [arXiv:gr-qc/09102054] doi:10.1088/1475-7516/2009/12/017
[18] R. Chan and M. F. A. da Silva, Journal of Cosmology and Astroparticle Physics, Vol. 7, 2010, p. 29. [arXiv:gr-qc/10053703] doi:10.1088/1475-7516/2010/07/029
[19] R. Chan, M. F. A. da Silva and P. Rocha, General Relativity and Gravitation, Vol. 43, 2011, p. 8. [arXiv:gr-qc/10094403] doi:10.1007/s10714-011-1178-6
[20] B. M. N. Carter, Class. Classical and Quantum Gravity, Vol. 22, 2005, p. 4551. doi:10.1088/0264-9381/22/21/007
[21] K. Lake, Physical Review D, Vol. 19, 1979, pp. 2847-2849. doi:10.1103/PhysRevD.19.2847
[22] R. Adler, M. Bazin and M. Schiffer, “Introduction to General Relativity,” McGraw-Hill Inc., 1975, p. 489.
[23] B. D. Koberlein and R. L. Mallet, Physical Review D, Vol. 49, 1994, pp. 5111-5114. doi:10.1103/PhysRevD.49.5111
[24] S. Shankaranarayanan, Physical Review D, Vol. 67, 2003, Article ID: 084026. doi:10.1103/PhysRevD.67.084026

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.