Non-Conducting Poly(O-Aminophenol) Films in the Field of the Bioelectrochemistry

Abstract

The practical use of non-conducting poly(o-aminophenol) (POAP) films in the field of the bioelectrochemistry is discussed in this paper. Particular emphasis is given to the effects of applied potential, solution pH and interferents on the response current of biosensors based on POAP.

Share and Cite:

R. Tucceri, "Non-Conducting Poly(O-Aminophenol) Films in the Field of the Bioelectrochemistry," American Journal of Analytical Chemistry, Vol. 4 No. 6A, 2013, pp. 13-26. doi: 10.4236/ajac.2013.46A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Inzelt, M. Pineri, J. W. Schulttze and M. A. Vorotyntsev, “Electron and Proton Conducting Polymers: Recent Developments and Prospects,” Electrochimica Acta, Vol. 45, No. 15-16, 2000, pp. 2403-2421. doi:10.1016/S0013-4686(00)00329-7
[2] C. Barbero, J. J. Silber and L. Sereno, “Formation of a Novel Electroactive Film by Electropolymerization of ortho-Aminophnol. Study of Its Chemical Structure and Formation Mechanism. Electropolymerization of Analogous Compounds,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 263, No. 2, 1989, pp. 333-352. doi:10.1016/0022-0728(89)85103-4
[3] S. Kunimura, T. Ohsaka and N. Oyama, “Preparation of Thin Polymeric Films on Electrode Surfaces by Electro- polymerization of o-Aminophenol,” Macromolecules, Vol. 21, No. 4, 1988, pp. 894-900. doi:10.1021/ma00182a007
[4] C. Barbero, J. Zerbino, L. Sereno and D. Posadas, “Optical Properties of Electropolymerized Orthoaminophenol,” Electrochimica Acta, Vol. 32, No. 4, 1987, pp. 693-697. doi:10.1016/0013-4686(87)87063-9
[5] T. Ohsaka, S. Kunimura and N. Oyama, “Electrode Kinetics of Poly(o-Aminophenol) Film Prepared by Electro- Oxidative Polymerization of o-Aminophenol and Its Electrochromic Properties,” Electrochimica Acta, Vol. 33, No. 5, 1988, pp. 639-645. doi:10.1016/0013-4686(88)80062-8
[6] A. Guenbourg, A. Kacemi, A. Benbachir and L. Aries, “Electropolymerization of 2-Aminophenol. Electrochemical and Spectroscopic Studies,” Progress in Organic Coatings, Vol. 38, No. 2, 2000, pp. 121-127. doi:10.1016/S0300-9440(00)00085-0
[7] J. M. Ortega, “Studies of Poly(o-Aminophenol) by Quartz Crystal Impedance Measurements,” Synthetic Metals, Vol. 97, No. 2, 1998, pp. 81-84. doi:10.1016/S0379-6779(98)00088-5
[8] A. Q. Zhang, C. Q. Cui, Y. Z. Chen and J. Y. Lee, “Synthesis and Electrochromic Properties of Poly-o-Aminophenol,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 373, No. 1-2, 1994, pp. 115-121. doi:10.1016/0022-0728(94)03329-3
[9] C. Barbero, J. J. Silber and L. Sereno, “Electrochemical Properties of Poly-ortho-Aminophenol Modified Electrodes in Aqueous Acid Solutions,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 291, No. 1-2, 1990, pp. 81-101. doi:10.1016/0022-0728(90)87179-N
[10] C. Barbero, R. I. Tucceri, D. Posadas, J. J. Silber and L. Sereno, “Impedance Characteristics of Poly-o-Aminophenol Electrodes,” Electrochimica Acta, Vol. 40, No. 8, 1995, pp. 1037-1040. doi:10.1016/0013-4686(94)00373-9
[11] R. I. Tucceri, “Surface Resistance Measurements on Thin Gold Film Electrodes Coated with Poly(o-Aminophenol) Films,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 505, No. 1-2, 2001, pp. 72-84. doi:10.1016/S0022-0728(01)00467-3
[12] R. I. Tucceri, “Specularity Change on a Thin Gold Film Surface Coated with Poly(o-Aminophenol) during the Po- lymer Redox Conversion. The pH Effect on the Redox Sites Distribution at the Metal-Polymer Interface,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 543, No. 1, 2003, pp. 61-71. doi:10.1016/S0022-0728(02)01482-1
[13] R. Tucceri, “A Review about the Surface Resistance Technique in Electrochemistry,” Surface Science Reports, Vol. 56, No. 3-4, 2004, pp. 85-157. doi:10.1016/j.surfrep.2004.09.001
[14] R. I. Tucceri, “The Change of the Electron Scattering at the Gold Film-Poly(o-Aminophenol) Film Interface after Partial Degradation of the Polymer Film: Its Relation with the Electron Transport Process within the Polymer Film,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 562, No. 2, 2004, pp. 173- 181. doi:10.1016/j.jelechem.2003.09.003
[15] T. Komura, Y. Ito, Y. T. Yamaguti and K. Takahasi, “Charge-Transport Processes at Poly-o-Aminophenol Film Electrodes: Electron Hopping Accompanied by Proton Exchange,” Electrochimica Acta, Vol. 43, No. 7, 1998, pp. 723-731. doi:10.1016/S0013-4686(97)00202-8
[16] O. Levin, V. Kondratiev and V. Malev “Charge Transfer Processes at Poly-o-Phenylenedialmine and Poly-o-Aminophenol,” Electrochimica Acta, Vol. 50, No. 7-8, 2005, pp. 1573-1585. doi:10.1016/j.electacta.2004.10.028
[17] F. J. Rodríguez Nieto, D. Posadas and R. Tucceri, “Effect of the Bathing Electrolyte Concentration on the Charge Transport Process at Poly(o-Aminophenol) Modified Electrodes. An ac Impedance Study,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 434, No. 1-2, 1997, pp. 83-91. doi:10.1016/S0022-0728(97)00235-0
[18] F. J. Rodríguez Nieto and R. Tucceri, “The Effect of pH on the Charge Transport at Redox Polymer-Modified Electrodes: An a.c. Impedance Study Applied to Poly(o-Aminophenol) Film Electrodes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 416, No. 1-2, 1996, pp. 1-24. doi:10.1016/S0022-0728(96)04704-3
[19] J. M. Ortega, “Conducting Potential Range of Poly(o- Aminophenol),” Thin Solid Films, Vol. 371, No. 1-2, 2000, pp. 28-35. doi:10.1016/S0040-6090(00)00980-9
[20] A. Bonfranceschi, A. Pérez Córdoba, S. Keunchkarian, S. Zapata and R. Tucceri, “Transport across Poly(o-Aminophenol) Modified Electrodes in Contact with Media Containing Redox Couples Species. A Study Using Rotating Disc Electrode Voltammetry,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 477, No. 1, 1999, pp. 1-13. doi:10.1016/S0022-0728(99)00368-X
[21] R. Tucceri, “The Effect of High Positive Potentials on the Different Charge Transport and Charge Transfer Parameters of Poly(o-Aminophenol) Modified Electrodes. A Study Using Cyclic Voltammetry, Steady-State Rotating Disc Electrode Voltammetry and Ac Impedance Measurements,” Journal of New Materials for Electrochemical Systems, Vol. 8, No. 4, 2005, pp. 305-315.
[22] W. Tao, D. Pan, Y. Liu, L. Nie and S. Yao, “An Amperometric Hydrogen Peroxide Sensor,” Analytical Biochemistry, Vol. 338, No. 2, 2005, pp. 332-340. doi:10.1016/j.ab.2004.12.009
[23] A. Guerrieri, R. Ciriello and D. Centonze, “Permselective and Enzyme-Entrapping Behaviors of an Electropolymerized, Non-Conducting, Poly(o-Aminophenol) Thin Film- Modified Electrode. A Critical Study,” Biosensors and Bioelectronics, Vol. 24, No. 6, 2009, pp. 1550-1556. doi:10.1016/j.bios.2008.08.004
[24] C. G. J. Koopal and R. J. M. Nolte, “An Amperometric Biosensor Based on Polypyrrole,” Bioelectrochemistry and Bioenergetics, Vol. 33, No. 1, 1994, pp. 45-53. doi:10.1016/0302-4598(94)87031-4
[25] S. Cosnier and H. Gunther, “A Polypyrrole [Rh(III)(C5Me5)(bpy)Cl]+ Modified Electrode for the Reduction of NAD+ Cofactor,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 315, No. 1-2, 1991, pp. 307-315. doi:10.1016/0022-0728(91)80079-6
[26] N. C. Foulds and C. R. Lowe, “Immobilization of Glucose Oxidase in Ferrocene-Modified Pyrrole Polymers,” Analytical Chemistry, Vol. 60, No. 22, 1988, pp. 2473-2478. doi:10.1021/ac00173a008
[27] S. Lu, C. Li, D. Zhang, Y. Zhang, Z. Mo, Q. Cai and A. Zhu, “Electron Transfer on an Electrode of Glucose Oxidase Immobilized in Polyaniline,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 364, No. 1-2, 1994, pp. 31-36. doi:10.1016/0022-0728(93)02928-B
[28] D. Pan, J. Chen, L. Nie, W. Tao and S. Yao, “Amperometric Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymrized o-Aminophenol Film at Prussian Blue-Modified Platinum Electrode,” Electrochimica Acta, Vol. 49, No. 5, 2004, pp. 795-801. doi:10.1016/j.electacta.2003.09.033
[29] X. Chen, J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie and S. Yao, “Amperometric Glucose Biosensor Based on Boron-Doped Carbon Nanotubes Modified Electrode,” Talanta, Vol. 76, No. 4, 2008, pp. 763-767. doi:10.1016/j.talanta.2008.04.023
[30] D. Pan, J. Chen, S. Yao, W. Tao and L. Nie, “An Amperometric Glucose Biosensor Based on Glucose Oxidase Immobilized in Electropolymerized Poly(o-Aminophenol) and Carbon Nanotubes Composite Film on a Gold Electrode,” Analytical Sciences, The Japan Society for Analytical Chemistry, Vol. 21, No. 4, 2005, pp. 367-371.
[31] Z. Zhang, H. Liu and J. Deng, “A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Electropolymerized o-Aminophenol Film on Platinized Glassy Carbon Electrode,” Analytical Chemistry, Vol. 68, No. 9, 1996, pp. 1632-1638. doi:10.1021/ac950431d
[32] J. Li and X. Lin, “Glucose Biosensor Based on Immobilization of Glucose Oxidase in Poly(o-Aminophenol) Film on Polypyrrole-Pt Nanocomposite Modified Glassy Carbon Electrode,” Biosensors and Bioelectronics, Vol. 22, No. 12, 2007, pp. 2898-2905. doi:10.1016/j.bios.2006.12.004
[33] A. Q. Zhang, C. Q. Cui and J. Y. Lee, “Metal-Polymer Interaction in the Ag+/Poly-o-Aminophenol System,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 413, No. 1-2, 1996, pp. 143-151. doi:10.1016/0022-0728(96)04668-2
[34] M. A. Valdés García, P. Tuñón Blanco and A. Ivaska, “A Poly(o-Aminophenol) Modified Electrode as an Amperometric Hydrogen Peroxide Biosensor,” Electrochimica Acta, Vol. 43, No. 23, 1998, pp. 3533-3539. doi:10.1016/S0013-4686(98)00101-7
[35] E. Miland, A. J. Miranda Ordieres, P. Tuñón Blanco, M. R. Smyth and C. O. Fágáin, “Poly(o-Aminophenol)-Modified Bienzyme Carbon Paste Electrode for the Detection of Uric Acid,” Talanta, Vol. 43, No. 5, 1996, pp. 785-791. doi:10.1016/0039-9140(95)01825-5
[36] J. Lobo Castañón, A. J. Miranda Ordieres and P. Tuñón Blanco, “A Bienzyme-Poly(o-Phenylenediamine)-Modified Carbon Paste Electrode for the Amperometric Detection of L-Lactate,” Analytica Chimica Acta, Vol. 346, No. 2, 1997, pp. 165-174. doi:10.1016/S0003-2670(97)00115-3
[37] M. J. Lobo, A. J. Miranda, J. M. López-Fonseca and P. Tuñón, “Electrocatalytic Detection of Nicotinamide Coenzymes by Poly(o-Aminophenol) and Poly(o-Phenylenediamine)-Modified Carbon Paste Electrode,” Analytica Chimica Acta, Vol. 325, No. 1-2, 1996, pp. 33-42. doi:10.1016/0003-2670(96)00022-0
[38] W. Zhaoyang, Z. Xiaolei, Y. Yunhui, S. Guoli and Y. Ruqin, “A Sensitive Nicotine Sensor Based on Molecularly Imprinted Electropolymer of o-Aminophenol,” Frontiers of Chemistry in China, Vol. 1, No. 2, 2006, pp. 183-187.
[39] H. Peng, F. Yin, A. Zhou and S. Yao, “Characterization of Electrosynthesized Poly(o-Aminophenol) as a Molecular Imprinting Material for Sensor Preparation by Means of Quartz Crystal Impedance Analysis,” Analytical Letters, Vol. 35, No. 3, 2002, pp. 435-450. doi:10.1081/AL-120002678

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.