Activation of the corticotropin-releasing factor receptor from the basolateral or central amygdala modulates nociception in guinea pigs

Abstract

Corticotropin-releasing factor (CRF) is a peptide that is released from the hypothalamus into widespread areas of the brain. Evidence has suggested that CRF is involved as a neuromodulator outside of the hypothalamic-pituitary-adrenal axis, playing an important role in fear, anxiety, depression and pain modulation. Our previous report demonstrated that CRF receptor activation in basolateral (BLA) or central nuclei of the amygdala (CeA) produces innate fear in guinea pigs. Inhibition of these receptors via administration of α-helical CRF9-41 (a nonspecific antagonist) into the CeA or BLA decreased innate fear behavior [1]. Additionally, there is strong evidence that emotional behavior and nociception can be modulated simultaneously. The present study was conducted to investigate the involvement of the CRF receptors of the BLA or CeA in nociception in guinea pigs. Guinea pigs were treated with CRF and α-helical CRF>9-41> in three different doses or injected with α-helical CRF9-41 preceded by CRF into the BLA or CeA, and they were evaluated using the hot plate test. Our findings indicated that activation of CRF receptors in the BLA and in the CeA promoted antinociception, and this effect was reversed by preadministration of α-helical CRF9-41 in the same area. The treatment with α-helical CRF>9-41> per se into the BLA and CeA did not alter nociception. Thus, nociception modulation occurs in a phasic manner, whereas defensive behavior can occur tonically because the α-helical CRF9-41 did not cause any modification on the index of analgesia in the hot plate test but did reduce innate fear behavior [1].

Share and Cite:

Donatti, A. and Leite-Panissi, C. (2013) Activation of the corticotropin-releasing factor receptor from the basolateral or central amygdala modulates nociception in guinea pigs. Advances in Bioscience and Biotechnology, 4, 20-27. doi: 10.4236/abb.2013.46A004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Donatti, A.F. and Leite-Panissi, C.R.A. (2011) Activation of corticotropin-releasing factor receptors from the basolateral or central amygdala increases the tonic immobility response in guinea pigs: An innate fear behavior. Behavioural Brain Research, 225, 23-30. doi:10.1016/j.bbr.2011.06.027
[2] Bittencourt, J.C. and Sawchenko, P.E. (2000) Do centrally administered neuropeptides access cognate recaptors? An analysis in the central corticotrophin-releasing factor system. Journal Neuroscience, 20, 1142-1156.
[3] Owens, M.J. and Nemeroff, C.B. (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacology Review, 43, 425-73.
[4] Butler R.K. and Finn D.P. (2009) Stress-induced analgesia. Progress in Neurobiology, 88, 184-202. doi:10.1016/j.pneurobio.2009.04.003
[5] Vit, J.P., Clauw, D.J., Moallem, T., Boudah, A., Ohara, P.T. and Jasmin, L. (2006) Analgesia and hyperalgesia from CRF receptor modulation in the central nervous system of Fischer and Lewis rats. Pain, 121, 241-260. doi:10.1016/j.pain.2005.12.024
[6] Ji, G. and Neugebauer, V. (2008) Pro-and anti-nociceptive effects of corticotropin-releasing factor (CRF) in central amygdala neurons are mediated through different receptors. Journal of Neurophysiology, 99, 1201-1212. doi:10.1152/jn.01148.2007
[7] Miguel, T.T., Gomes, K.S. and Nunes-De-Souza, R.L. (2012) Contrasting effects of nitric oxide and corticotropin-releasing factor within the dorsal periaqueductal gray on defensive behavior and nociception in mice. Brazilian Journal of Medical and Biological Research, 45, 299-307. doi:10.1590/S0100-879X2012007500043
[8] Miguel, T.T. and Nunes-De-Souza, R. L. (2011) Anxiogenic and antinociceptive effects induced by corticotropin-releasing factor (CRF) injections into the periaqueductal gray are modulated by CRF1 receptor in mice. Hormone Behavioral, 60, 262-300. doi:10.1016/j.yhbeh.2011.06.004
[9] Skorzewska, A., Bidzinski, A., Hamed, A., Lehner, M. and Turzynska, D., Sobolewska, A., et al. (2009) The effect of CRF and alpha-helical CRF9-41 on rat fear responses and amino acids release in the central nucleus of the amygdala. Neuropharmacology, 57, 148-156. doi:10.1016/j.neuropharm.2009.04.016
[10] Cummings, S., Elde, R., Ells, J. and Lindall A. (1983) Corticotropin releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: An immunohistochemical study. Journal Neuroscience, 3, 1355-1368.
[11] Palkovits, M., Brownstein, M. J. and Vale, W. (1985) Distribution of corticotropin releasing factor in the rat brain. FASEB Journal, 44, 215-219.
[12] Swanson, L.W., Sawchenko, P.E., Rivier, J. and Vale, W.W. (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology, 36,165-186. doi:10.1159/000123454
[13] De Souza, E.B., Insel, T.R., Perrin, M.H., Rivier, J., Vale, W. and Kuhar, M.J. (1985) Corticotropin releasing factor receptors are widely distributed within the rat central nervous system: An autoradiographic study. Journal Neuroscience, 5, 3189-3203.
[14] Ji, G. and Neugebauer, V. (2007) Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. Journal Neurophysiology, 97, 3893-3904. doi:10.1152/jn.00135.2007
[15] Leite-Panissi, C.R.A., Rodrigues, C.L., Brentegani, M.R. and Menescal-De-Oliveira, L. (2001) Endogenous opiate analgesia induced by tonic immobility in guinea pigs. Brazilian Journal Medical and Biological Research, 34, 245 250. doi:10.1590/S0100-879X2001000200013
[16] Rössner, W. (1965) Steretaktischer hirnatlas von meerchwlinchen. Palla Velag, Munich.
[17] Cui, X.Y., Lundeberg, T. and Yu, L.C. (2004) Role of corticotrophin-release factor and its receptor in nociceptive modulation in the central nucleus of amygdale in rats. Brain Research, 995, 23-28. doi:10.1016/j.brainres.2003.09.050
[18] Lariviere, W. R. and Melzack, R. (2000) The role of corticotropin-releasing factor in pain and analgesia. Pain, 84, 1-12. doi:10.1016/S0304-3959(99)00193-1
[19] Hargreaves K.M., Flores, C.M., Dionne, R.A., Mueller, G.P. (1990) The role of pituitary beta-endorphin in mediating corticotropin-releasing factor-induced antinociception. American Journal Physiology, 258, E235-242.
[20] Song, Z. H. and Takemori, A. (1990) E. Involvement of spinal kappa opioid receptors in the antinociception produced by intrathecally administered corticotropin-releasing factor in mice. Journal of Pharmacology and Experimental Therapy, 254, 363-368.
[21] Bianchi, M. and Panerai, A.E. (1995) CRH and the noradrenergic system mediate the antinociceptive effect of central interleukin-1α in the rat. Brain Research Bulletin, 36, 113-117. doi:10.1016/0361-9230(94)00174-Y
[22] Lautenbacher, S., Roscher, S., Kohl, G., Vedder, H. and Krieg, J. (1999) Corticotropin-releasing-hormone lacks analgesic properties: An experimental study in humans, using non-inflammatory pain. Pain, 83, 1-7. doi:10.1016/S0304-3959(99)00072-X
[23] Sawamura, S., Obara, M., Taked, A.K., Maze, M. and Hanaoka, K. (2003) Corticotropin-releasing factor mediates the antinociceptive action of nitrous oxide in rats. Anesthesiology, 99,708-715. doi:10.1097/00000542-200309000-00028
[24] Yarushkina, N.I. (2008) The role of hypothalamo-hypophyseal-adrenocortical system hormones in controlling pain sensitivity. Neuroscience Behavioral and Physiology, 38,759-766. doi:10.1007/s11055-008-9044-z
[25] Yarushkina, N.I., Bagaeva, T.R. and Filaretova, L.P. (2011) Central corticotropin-releasing factor (CRF) may attenuate somatic pain sensitivity through involvement of glucocorticoids. Journal of Physiology and Pharmacology, 62,541-548.
[26] Yarushkina, N.I. and Bagaeva, T.R. (2011) Mechanism of the analgesic effect of corticotropin-releasing factor in conscious rats. Neuroscience Behavioral Physiology, 41, 500-505. doi:10.1007/s11055-011-9444-3
[27] McNally, G.P. and Akil, H. (2002) Role of corticotropin-releasing hormone in the amygdala and bed nucleus of the stria terminalis in the behavior, pain modulatory, and endocrine consequences of opiate withdrawal. Neuroscience, 112, 605-617. doi:10.1016/S0306-4522(02)00105-7
[28] Steckler, T. (2001) The molecular neurobiology of stress —Evidence from genetic and epigenetic models. Behavioural Pharmacology, 12,381-427. doi:10.1097/00008877-200111000-00002
[29] Rouwette, T., Klemann, K., Gaszner, B., Scheffer, G.J., Roubos, E.W., Scheenen, W.J., Vissers, K. and Kozicz, T. (2011) Differential responses of corticotropin-releasing factor and urocortin 1 to acute pain stress in the rat brain. Neuroscience, 183, 15-24. doi:10.1016/j.neuroscience.2011.03.054
[30] Deyama, S., Nakagawa, T., Kaneko, S., Uehara, T. and Minami, M. (2007) Involvement of the bed nucleus of the stria terminalis in the negative affective component of visceral and somatic pain in rats. Behavioural Brain Research, 176, 367-371. doi:10.1016/j.bbr.2006.10.021
[31] Valentino, R.J. and Foote, S.L. (1987) Corticotropinreleasing factor disrupts sensory responses of brain noradrenergic neurons. Neuroendocrinology, 45, 28-36. doi:10.1159/000124700
[32] Aldenhoff, J.B., Gruol, D.L., Rivier, J., Vale, W. and Siggins, G.R. (1983) Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science, 221, 875-877. doi:10.1126/science.6603658
[33] Bardin, L., Malfetes, N., Newman-Tancredi, A. and Depoortere, R. (2009) Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies. Behavioural Brain Research, 205, 360-366. doi:10.1016/j.bbr.2009.07.005
[34] Gamaro, G.D., Xavier, M.H., Pilger, J.A., Ely, D.R. and Dalmaz, C. (1998) The effect acute and repeated restraint stress on the nociceptive response in rats. Physiology and Behavior, 63, 693-697. doi:10.1016/S0031-9384(97)00520-9
[35] Caceres, C. and Burns, J.W. (1997) Cardiovascular reactivity to psychological stress may enhance subsequent pain sensitivity. Pain, 69, 237-244. doi:10.1016/S0304-3959(96)03289-7
[36] Amit, Z. and Galina, Z.H. (1986) Stress-induced analgesia: Adaptative pain suppression. Physiological Review, 66, 1091-120.
[37] Myers, B., Dittmeyer, K. and Greenwood-Van Meerveld, B. (2007) Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behavioural Brain Research, 181, 163-167. doi:10.1016/j.bbr.2007.03.031
[38] Myers, B. and Greenwood-Van Meerveld B. (2007) Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. American Journal Physiology Gastrointestinal and Liver Physiology, 292, 1622-1629. doi:10.1152/ajpgi.00080.2007
[39] Shekhar, A., Truit, W., Rainnie, D. and Sajdyk, T. (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdale plasticity in chronic anxiety. Stress, 8, 209-219. doi:10.1080/10253890500504557
[40] Phelps, E.A. and LeDoux, J.E. (2005) Contributions of the amygdala to emotion processing: from animal models to human behaviour. Neuron, 48, 175-187. doi:10.1016/j.neuron.2005.09.025
[41] Xu, W., Lundeberg, T., Wang, Y.T., Li, Y. and Yu, L.C. (2003) Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: Activating opioid receptors through amygdala-periaqueductal gray pathway. Neuroscience, 118, 1015-1022. doi:10.1016/S0306-4522(03)00069-1
[42] Leite-Panissi, C.R.A., Brentegani, M.R. and Menescalde-Oliveira, L. (2004) Cholinergic-opioidergic interaction in the central amygdala induces antinociception in the guinea pig. Brazilian Journal and Medical Biology Research, 37, 1571-1579. doi:10.1590/S0100-879X2004001000018
[43] Greenwood-Van Meerveld, B., Johnson, A. C., Schulkin, J. and Myers, D. A. (2006) Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Research, 1071, 91-96. doi:10.1016/j.brainres.2005.11.071
[44] Sinniger, V., Porcher, C., Mouchet, P., Juhem, A. and Bonaz, B. (2004) C-fos and CRF receptor gene transcription in the brain of acetic acid-induced somatovisceral pain in rats. Pain, 110, 738-750. doi:10.1016/j.pain.2004.05.014
[45] Ulrich-Lai, Y.M., Xie, W., Meij, J.T.A., Dolgas, C.M., Yu, L. and Herman, J. P. (2006) Limbic and HPA axis function in the animal model of chronic neuropathic pain. Physiology and Behavior, 88, 67-76. doi:10.1016/j.physbeh.2006.03.012
[46] Martinez, V., Wang, L., Million, M., Rivier, J. and Tache, Y. (2004) Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides, 25, 17331744. doi:10.1016/j.peptides.2004.05.025
[47] Million, M., Grigoriadis, D. E., Sullivan, S., Crowe, P. D., Mcroberts, J. A., Zhou, H., Saunders, P. R., Maillot, C., Myer, E. A. and Tache, Y. A. (2003) Novel water-soluble selective CRF1 receptor antagonist, NBI 35965, blunts stress induced visceral hyperalgesia and colonic motor function in rats. Brain Research, 985, 32-42. doi:10.1016/S0006-8993(03)03027-0
[48] Million, M., Wang, L., Adelson, D.W., Yuan, P-Q., Maillot, C., Coutinho, S.V., Mcroberts, J.A., Bayati, A., Mattsson, H., Wu, V., Wei, J-Y, Rivier, J., Vale, W., Mayer, E.A. and Taché, Y. (2006) CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Neurogastroenterology, 55, 172-181.
[49] Nijsen, M., Ongenae, N., Meulemans, A. and Coulie, B. (2005) Divergent role for CRF1 and CRF2 receptors in the modulation of visceral pain. Neurogastroenterology and Motilin, 17, 423-432. doi:10.1111/j.1365-2982.2005.00644.x
[50] Taché, Y. and Bonaz, B. (2007) Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. Journal of Clinical Investigation, 117, 33-40. doi:10.1172/JCI30085
[51] Taché, Y., Martinez, V., Wang, L. and Million, M. (2004) CRF1 receptor signaling pathways are involved in stressrelated alterations of colonic function and viscerosensitivity: Implications for irritable bowel syndrome. British Journal Pharmacology, 141, 1321-1330. doi:10.1038/sj.bjp.0705760

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.