Share This Article:

The Classical Limit of the Quantum Kepler Problem

Abstract Full-Text HTML XML Download Download as PDF (Size:275KB) PP. 818-822
DOI: 10.4236/jmp.2013.46112    4,217 Downloads   6,037 Views   Citations

ABSTRACT

The classical limit of the quantum mechanical Kepler problem is derived by using a simple mathematical procedure recently proposed. The method is based both on Bohr’s correspondence principle and the local averages of the quantum probability distribution. We illustrate in a clear fashion the difference between Planck’s limit and Bohr’s correspondence principle. We discuss the confinement effect in macroscopic systems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Martín-Ruiz, J. Bernal, A. Frank and A. Carbajal-Dominguez, "The Classical Limit of the Quantum Kepler Problem," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 818-822. doi: 10.4236/jmp.2013.46112.

References

[1] A. J. Makowski, European Journal of Physics, Vol. 27, 2006, pp. 1133-1139. doi:10.1088/0143-0807/27/5/012
[2] L. E. Ballentine, “Quantum Mechanics: A Modern Development,” World Scientific, New York, 1998.
[3] L. E. Ballentine, Y. M. Yang and J. P. Zibin, Physical Review A, Vol. 50, 1994, pp. 2854-2859. doi:10.1103/PhysRevA.50.2854
[4] M. Berry, Physica Scripta, Vol. 40, 1989, pp. 335-336. doi:10.1088/0031-8949/40/3/013
[5] L. S. Brown, American Journal of Physics, Vol. 40, 1972, pp. 371-376. doi:10.1119/1.1986554
[6] L. S. Brown, American Journal of Physics, Vol. 41, 1973, pp. 525-530. doi:10.1119/1.1987282
[7] D. Bhaumik, B. Dutta-Roy and G. Ghosh, Journal of Physics A: Mathematical and General, Vol. 19, 1986, pp. 1355-1364. doi:10.1088/0305-4470/19/8/017
[8] S. Nandi and C. S. Shastry, Journal of Physics A: Mathematical and General, Vol. 22, 1989, pp. 1005-1016. doi:10.1088/0305-4470/22/8/016
[9] G. Yoder, American Journal of Physics, Vol. 74, 2006, p. 404. doi:10.1119/1.2173280
[10] R. W. Robinett, American Journal of Physics, Vol. 63, 1995, pp. 823-832. doi:10.1119/1.17807
[11] E. G. P. Rowe, European Journal of Physics, Vol. 8, 1987, pp. 81-87. doi:10.1088/0143-0807/8/2/002
[12] A. R. Edmonds, “Angular Momentum in Quantum Mechanics,” Princeton University Press, Princeton, 1974.
[13] J. Bernal, A. Martn-Ruiz and J. Garca-Melgarejo, Journal of Modern Physics, Vol. 4, 2013, pp. 108-112. doi:10.4236/jmp.2013.41017
[14] H. Goldstein, C. P. Poole and J. P. Safko, “Classical Mechanics,” Addison-Wesley, San Francisco, 2002.
[15] R. Liboff, “Introductory Quantum Mechanics,” 4th Edition, Addison-Wesley, Boston, 2002.
[16] H. M. Srivastava, H. A. Mavromatis and R. S. Alassar, Applied Mathematics Letters, Vol. 16, 2003, pp. 1131-1136. doi:10.1016/S0893-9659(03)90106-6
[17] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, “Integrals and Series, Vol. 3: More Special Functions,” Gordon and Breach Science Publishers, New York, 1989.
[18] L. J. Slater, “Generalized Hypergeometric Functions,” Cambridge University Press, Cambridge, 2008.
[19] M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables,” Dover Publications, New York, 1965.
[20] H. Bacry and I.-M. Lavy-Leblond, Journal of Mathematical Physics, Vol. 9, 1968, pp. 1605-1615. doi:10.1063/1.1664490
[21] W. H. Zurek, Reviews of Modern Physics, Vol. 75, 2003, pp. 715-775. doi:10.1103/RevModPhys.75.715
[22] D. Sen and S. Sengupta, Indian Journal of Physics, Vol. 73, 1999, pp. 135-139.
[23] A. Martín-Ruiz, J. Bernal and A. Carbajal-Dominguez, “Residual Effects of Quantum Transitions at Macroscopic Level,” in Press.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.