Share This Article:

Propagation and Confinement of Electric Field Waves along One-Dimensional Porous Silicon Hybrid Periodic/Quasiperiodic Structure

Abstract Full-Text HTML XML Download Download as PDF (Size:2333KB) PP. 1-12
DOI: 10.4236/opj.2013.32A001    4,966 Downloads   7,257 Views   Citations

ABSTRACT

Selective spatial confinement of the electric field intensity is theoretically obtained for the light propagation along hybrid structures conformed by periodic and Fibonacci quasiperiodic dielectric multilayers. Sandwich-like configurations featuring periodic-quasiperiodic-periodic as well as quasiperiodic-periodic-quasiperiodic designs exhibit spatial localization of a large percent of the optical signal within specific zones of the hybrid system. Such a feature might be of interest in the pursuing of lasing devices based on porous silicon. It is found that the electric field confinement does not only depend on the quality of the defect or a particular transmission mode observed in the reflectivity spectra. We show that it is possible to enhance the electric field confinement solely varying the angle of incidence. The possibility of realizing finite photonic crystals with reduced size and very well defined band gap by means of a quasiperiodic-periodic-quasiperiodic hybrid multilayer is also revealed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Escorcia-García and M. Mora-Ramos, "Propagation and Confinement of Electric Field Waves along One-Dimensional Porous Silicon Hybrid Periodic/Quasiperiodic Structure," Optics and Photonics Journal, Vol. 3 No. 2A, 2013, pp. 1-12. doi: 10.4236/opj.2013.32A001.

References

[1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Physical Review Letters Vol. 58, No. 20, 1987, pp. 2059-2062. doi:10.1103/PhysRevLett.58.2059
[2] M. Kohmoto, B. Sutherland and K.Iguchi, “Localization of Optics: Quasiperiodic Media,” Physical Review Letters, Vol. 58, No. 23, 1987, pp. 2436-2438. doi:10.1103/PhysRevLett.58.2436
[3] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Physical Review Letters, Vol. 58, No. 23, 1987, pp. 2486-2489. doi:10.1103/PhysRevLett.58.2486
[4] R. Perez-Alvarez and F. Garcia-Moliner, “Some Con temporary Problems in Condensed Matter Physics,” Nova Science, New York, 2001, pp. 1-37.
[5] R. Perez-Alvarez, F. Garcia-Moliner and V. R. Velasco, “Some Elementary Questions in the Theory of Quasiperiodic Heterostructures,” Journal of Physics: Condensed Matter, Vol. 13, No. 15, 2001, p. 3689. doi:10.1088/0953-8984/13/15/312
[6] J. E. Zarate and V. R. Velasco, “Electronic Properties of Quasiperiodic Heterostructures,” Physical Review B, Vol. 65, No. 4, 2001, Article ID: 045304. doi:10.1103/PhysRevB.65.045304
[7] V. R. Velasco and F. Garcia-Moliner, “Electronic Spectra of Quasi-regular Heterostructures: Simple versus Realistic,” Progress in Surface Science, Vol. 74, No. 1-8, 2003, pp. 343-355. doi:10.1016/j.progsurf.2003.08.027
[8] E. Maciá and F. Domínguez-Adame, “Electrons, Phonons and Excitons in Low Dimensional Aperiodic Systems,” Editorial Complutense, Madrid, 2000.
[9] V. R. Velasco, R. Pérez-Alvarez and F. García-Moliner, “Some Properties of the Elastic Waves in Quasiregular Heterostructures,” Journal of Physics: Condensed Matter, Vol. 14, No. 24, 2002, p. 5933. doi:10.1088/0953-8984/14/24/305
[10] H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj and V. R. Velasco, “Propagation and Localization of Acoustic Waves in Fibonacci Phononic Circuits,” Journal of Physics: Condensed Matter, Vol. 17, 2005, p. 4245.doi:10.1088/0953-8984/17/27/002
[11] H. Aynaou, A. Nougaoui, E. H. El Boudouti, D. Bria, V. R. Velasco and B. Djafari-Rouhani, “Comparative Study of the Sagittal Elastic Waves in Metallic and Semiconductor Multilayer Systems between Period and Fibonacci Superlattices,” Surface Science, Vol. 584, No. 2-3, 2005, pp. 199-213. doi:10.1016/j.susc.2005.03.057
[12] C. S. Ryu, G. Y. Oh and M. H. Lee, “Extended and Critical Wave Functions in a Thue-Morse Chain,” Physical Review B, Vol. 46, No. 9, 1992, pp. 5162-5168. doi:10.1103/PhysRevB.46.5162
[13] C. S. Ryu, G. Y. Oh and M. H. Lee, “Electronic Proper ties of a Tight-Binding and a Kronig-Penney Model of the The-Morse Chain,” Physical Review B, Vol. 48, No. 1, 1993, pp. 132-141. doi:10.1103/PhysRevB.48.132
[14] V. R. Velasco, J. E. Zárate, “Elastic Waves in Quasiperiodic Structures,” Progress in Surface Science, Vol. 67, No. 1-8, 2001, pp. 383-402. doi:10.1016/S0079-6816(01)00038-7
[15] J. Tutor and V. R. Velasco, “Some Properties of the Transverse Elastic Waves in Quasiperiodic Structures,” International Journal of Modern Physics B, Vol. 15, No. 21, 2001, pp. 2925-2934. doi:10.1142/S0217979201007129
[16] S. He and J. D. Maynard, “Detailed Measurements of Ineslatic Scattering in Anderson Localization,” Physical Review Letters, Vol. 57, No. 25, 1986, pp. 3171-3174. doi:10.1103/PhysRevLett.57.3171
[17] W. Gellermann, M. Kohmoto, B. Sutherland and P. C. Taylor, “Localization of Light Waves in Fibonacci Dielectric Multilayers,” Physical Review Letters, Vol. 72, No. 5, 1994, pp. 633-636. doi:10.1103/PhysRevLett.72.633
[18] D. Lusk, I. Abdulhalim and F. Placido, “Omnidirectional Reflection from Fibonacci Quasi-periodic One-Dimensional Photonic Crystal,” Optics Communications, Vol. 198, No. 4-6, 2001, pp. 273-279. doi:10.1016/S0030-4018(01)01531-0
[19] J. W. Dong, P. Han and H. Z. Wang, “Broad Omnidirectional Reflection Band Forming using the Combination of Fibonacci Quasi-Periodic and Periodic One-Dimensional Photonic Crystals,” Chinese Physics Letters, Vol. 20, No. 11, 2003, pp. 1963-1965. doi:10.1088/0256-307X/20/11/017
[20] V. Agarwal and M. E. Mora-Ramos, “Optical Characterization of Polytype Fibonacci and Thue-Morse Quasiregular Dielectric Structures Made of Porous Silicon Multilayers,” Journal of Physics D: Applied Physics, Vol. 40, No. 10, 2007, pp. 3203-3211. doi:10.1088/0022-3727/40/10/026
[21] N. Liu, “Defect Modes of Stratified Dielectric Media,” Physical Review B, Vol. 55, No. 7, 1997, pp. 4097-4100. doi:10.1103/PhysRevB.55.4097
[22] S. F. Musikhin, V. I. II’in, O. V. Rabizo, L. G. Bakueva and T. V. Yudinstseva, “Optical Properties of quasiperiodic and aperiodic PbS-CdS superlattices,” Semiconductors, Vol. 31, No. 1, 1997, pp. 46-50.
[23] R. Pelster, V. Gasparian and G. Nimtz, “Propagation of Plane Waves and of Waveguide Modes in Quasiperiodic Dielectric Heterostructures,” Physical Review E, Vol 55, No. 6, 1997, pp. 7645-7655. doi:10.1103/PhysRevE.55.7645
[24] M. S. Vasconcelos and E. L. Albuquerque, “Transmission Fingerprints in Quasiperiodic Dielectric Multilayers,” Physical Review B, Vol. 59, No. 17, 1999, pp. 11128 11131. doi:10.1103/PhysRevB.59.11128
[25] C. J. Oton, L. Dal Negro, Z. Gaburro, L. Pavesi, P. J. Johnson, A. Lagendijk and D. S. Wiersma, “Light Propa gation in One-Dimensional Porous Silicon Complex Systems,” Physica Status Solidi A, Vol 197, No. 1, 2003, pp. 298-302. doi:10.1002/pssa.200306485
[26] F. Qiu, R. W. Peng, X. Q. Huang, Y. M. Liu, M. Wang, A. Hu and S. S. Jiang, “Resonant Transmission and Frequency Trifurcation of Light Waves in Thue-Morse Di electric Multilayers,” Europhysics Letters, Vol. 63, No. 6, 2003, pp. 853-859. doi:10.1209/epl/i2003-00608-x
[27] L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. Le Blanc and J. Haavisto, “Photon Band Gap Properties and Omnidirectional reflectance in Si/ SiO2 Thue-Morse Quasicrystals,” Applied Physics Letters, Vol. 84, No. 25, 2004, pp. 5186-5188. doi:10.1063/1.1764602
[28] L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel and L. C. Kimerling, “Spectrally Enhanced Light Emission from Aperiodic Photonic Structures”, Applied Physics Letters, Vol. 86, No. 26, 2005, Article ID: 261905. doi:10.1063/1.1954897
[29] X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi and J. D. Joannopoulos, “Photonic Band Gaps and Localization in the Thue-Morse Structures,” Applied Physics Letters, Vol. 86, No. 20, 2005, pp. 201110. doi:10.1063/1.1928317
[30] S. Chakraborty, D. G. Hasko and R. J. Mears, “Aperiodic Lattices in a High Refractive Index Contrast System for Photonic Bandgap Engineering,” Microelectronic Engineering, Vol. 73-74, 2004, pp. 392-396. doi:10.1016/j.mee.2004.02.076
[31] G. V. Morozov, D. W. L. Sprung and J. Martorell, “Semi classical Coupled Wave Theory for TM Waves in One-Dimensional Photonic Crystals,” Physical Review E, Vol. 70, No. 1, 2004, pp. 016606. doi:10.1103/PhysRevE.70.016606
[32] M. E. Mora-Ramos, V. Agarwal and J. A. Soto-Urueta, “Propagation of Light in Quasi-Regular Dielectric Heterostructures with Delta-Like Layers,” Microelectronics Journal, Vol. 36, No. 3-6, 2005, pp. 413-415. doi:10.1016/j.mejo.2005.02.034
[33] S. Chakraborty, M. C. Parker and R. J. Mears, “A Fourier (k-) Space Design Approach for Controllable Photonic Band and Localization States in Aperiodic Lattices,” Photonics and Nanostructures—Fundamentals and Applications, Vol. 3, No. 2-3, 2005, pp. 139-147. doi:10.1016/j.photonics.2005.09.011
[34] V. Agarwal, J. A. Soto-Urueta, D. Becerra and M. E. Mora-Ramos, “Light Propagation in Polytype Thue Morse Structures Made of Porous Silicon,” Photonics and Nanostructures—Fundamentals and Applications, Vol. 3, No. 2-3, 2005, pp. 155-161. doi:10.1016/j.photonics.2005.09.003
[35] S. V. Zhukovsky and A. V. Lavrinenko, “Spectral Self Similarity in Fractal One-Dimensional Photonic Structures,” Photonics and Nanostructures—Fundamentals and Applications, Vol. 3, No. 2-3, 2005, pp. 129-133. doi:10.1016/j.photonics.2005.09.010
[36] V. Agarwal, J. Escorcia-García and M. E. Mora-Ramos, “Optical Properties of Delta Poly-Type Quasiregular Di electric Structures Made from Porous Silicon,” Physica Status Solidi A, Vol. 204, No. 2007, pp. 1367-1371. doi:10.1002/pssa.200674343
[37] V. Agarwal, M. E. Mora-Ramos and B. Alvarado-Tenorio, “Optical Properties of Multilayered Period-Doubling and Rudin-Shapiro Porous Silicon Dielectric Heterostructures,” Photonics and Nanostructures—Fundamentals and Applications, Vol. 7, No. 2, 2009, pp. 63-68. doi:10.1016/j.photonics.2008.11.001
[38] E. M. Nascimento, F. A. B. F. de Moura and M. L. Lyra, “Suppressed Transmission in Aperiodically Modulated Multilayered Dielectric Structures,” Photonics and Nanostructures—Fundamentals and Applications, Vol. 7, No. 2, 2009, pp. 101-107. doi:10.1016/j.photonics.2008.12.004
[39] B. Alvarado-Tenorio, J. Escorcia-García, M. E. Mora Ramos and V. Agarwal, “Optical Properties of Non-Periodic Dielectric Systems Made of Nanostructured Porous Silicon,” Journal of Nanoparticle Research, Vol. 5, 2009, pp. 69-78. doi:10.4028/www.scientific.net/JNanoR.5.69
[40] N. Ben Ali and M. Kanzari, “Omni-Directional High Reflectors using One-Dimensional Deformed Quasi-Periodic Cantor Band Gap Structure at Optical Telecommu nication Wavelength Band,” Mediterranean J. Electron. Commun., Vol. 6, 2010, p. 72.
[41] V. Grigoriev and F. Biancalana, “Bistability and Stationary Gap Solitons in Quasiperiodic Photonic Crystals Based on Thue-Morse Sequence,” Photonics and Nanostructures—Fundamentals and Applications, Vol. 8, No. 4, 2010, pp. 285-290.doi:10.1016/j.photonics.2010.05.002
[42] E. Macia, “Optical Engineering with Fibonacci Dielectric Multilayers,” Applied Physics Letters, Vol. 73, No. 23, 1998, p. 3330. doi:10.1063/1.122759
[43] E. Macia, “Exploiting Quasiperiodic Order in the Design of Optical Devices,” Physical Review B, Vol. 63, No. 20, 2001, Article ID: 205421. doi:10.1103/PhysRevB.63.205421
[44] D. J. Wen, H. Peng and W. H. Zhou, “Broad Omnidirectional Reflection Band Forming using the Combination of Fibonacci Quasi-Periodic and Periodic One-Dimensional Photonic Crystals,” Chinese Physics Letters, Vol. 20, No. 11, 2003, p. 1963. doi:10.1088/0256-307X/20/11/017
[45] A. Montalbán, V. R. Velasco, J. Tutor and F. J. Fernán dez-Velicia, “Phonon Confinement in One-Dimensional Hybrid Periodic/Quasiregular Structures,” Physical Re view B, Vol. 70, No. 13, 2004, Article ID: 132301. doi:10.1103/PhysRevB.70.132301
[46] A. Montalbán, V. R. Velasco, J. Tutor and F. J. Fernán dez-Velicia, “Selective Spatial Localization of the Atom Displacements in One-Dimensional Hybrid Quasi-Regular (Thue-Morse and Rudin-Shapiro)/Periodic Structures,” Surface Science, Vol. 601, No. 12, 2007, pp. 2538-2547. doi:10.1016/j.susc.2007.04.204
[47] A. Montalbán, V. R. Velasco, J. Tutor and F. J. Fer nández-Velicia, “Phonons in Hybrid Fibonacci/Periodic Multilayers,” Surface Science, Vol. 603, No. 6, 2009, pp. 938-944. doi:10.1016/j.susc.2009.02.011
[48] J. Escorcia-García and M. E. Mora-Ramos, “Study on the Influence of the Incidence Direction on the Photonic Band Gap in Porous Si-based Dielectric Heterostructures,” PIERS Online, Vol. 5, No. 1, 2009, pp. 36-40. doi:10.2529/PIERS080906015039
[49] J. Escorcia-García and M. E. Mora-Ramos, “Electromagnetic Modes in Hybrid Periodic-Non-Periodic Dielectric Porous Silicon Multilayers,” PIERS Online, Vol. 5, No. 1, 2009, pp. 91-94. doi:10.2529/PIERS080906014020
[50] J. Escorcia-García and M. E. Mora-Ramos, “Study of Optical Propagation in Hybrid Periodic/Quasiregular Structures Based on Porous Silicon,” PIERS Online, Vol. 5, No. 2, 2009, pp. 167-170. doi:10.2529/PIERS080906010703
[51] J. Escorcia-García and M. E. Mora-Ramos, “Optical Properties of Hybrid Periodic/Quasiregular Dielectric Multi layers,” Superlattices and Microstructures, Vol. 49, No. 3, 2011, pp. 203-208. doi:10.1016/j.spmi.2010.08.006
[52] N. Ben Ali, J. Zaghdoudi, M. Kanzari and R. Kszelewicz, “The Slowing of Light in One-Dimensional Hybrid Periodic and Non-Periodic Photonic Crystals,” Journal of Optics, Vol. 12, No. 4, 2010, Article ID: 045402. doi:10.1088/2040-8978/12/4/045402
[53] N. Ben Ali and M. Kanzari, “Designing of Omni-Directional High Reflectors by using One-Dimensional Modified Hybrid Fibonacci/Cantor Band-Gap Structures at Optical Telecommunication Wavelength Band,” Journal of Modern Optics, Vol. 57, No. 4, 2010, pp. 287-294. doi:10.1080/09500340903545289
[54] N. Ben Ali and M. Kanzari, “Designing of Stop Band Filters using Hybrid Periodic/Quasi-Periodic One-Dimensional Photonic Crystals in Microwave Domain,” Physica Status Solidi A, Vol. 208, No. 1, 2011, pp. 161-171. do:10.1002/pssa.200925531
[55] K. S. Pérez, J. O. Estévez, A. Méndez-Blas, J. Arriaga, G. Palestino and M. E. Mora-Ramos, “Tunable Resonance Transmission Modes in Hybrid Heterostructures Based on Porous Silicon,” Nanoscale Research Letters, Vol. 7, 2012, pp. 392. doi:10.1186/1556-276X-7-392
[56] M. E. Mora, R. Perez and Ch. Sommers, “Transfer Matrix in One Dimensional Problems,” Journal de Physique Ar chives, Vol. 46, No. 7, 1985, pp. 1021-1026. doi:10.1051/jphys:019850046070102100
[57] P. Yeh, “Optical Waves in Layered Media,” John Wiley and Sons, New York, 1988.
[58] L. Carretero, M. Perez-Molina, P. Acebal, S. Blaya and A. Fimia, “Matrix Method for the Study of Wave Propagation in One-Dimensional General Media,” Optics Express, Vol. 14, No. 23, 2006, pp. 11385-11391. doi:10.1364/OE.14.011385
[59] M. Toledo Solano, Y. G. Rubo, J. A. del Río and M. C. Arenas, “Rayleigh Scattering in Multilayered Structures of Porous Silicon,” Physica Status Solidi C, Vol. 2, No. 10, 2005, pp. 3544-3547. doi:10.1002/pssc.200461800

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.