Comparison of a Soil Vulnerability Map for Tetracycline Soil Contamination at a Global and Local Scale

Abstract

Recently, de la Torre[1] provided an approach for assessing the vulnerability of European soils for tetracyclines, fluoroquinolones and sulfamides contamination using a spatial risk assessment. It allowed identifying areas where vulnerable soil more occur, providing useful information for policies designed to reduce contamination. In the current study, this approach was applied to a local level, the autonomous region of Castile and León (C&L), located in the north-west part of Spain. High accurate and reliable source data were employed to generate a soil vulnerability map for tetracyclines in the study area, attempting to improve the release and consequence risk prediction. More specifically, pig density, temperature and soil use risk estimators were improved using data from national or local databases. Result comparison between the European and the present approach showed a good agreement demonstrating the utility of the European vulnerability map to be employed not only at global level but also for deciding how to allocate limited resources on national or subnational environmental surveillance programs of antibiotics. The model application at local level using more accurate data from national or local sources, afforded a better understanding of the spatial distribution of the risk, mainly associated with the higher accuracy of the national land use database SIOSE. It could offer a useful tool for local management of the risk, such as the management of animal manures fertilization on soil.

Share and Cite:

A. Torre, I. Iglesias, L. Camuñas, M. Muñoz and M. Carballo, "Comparison of a Soil Vulnerability Map for Tetracycline Soil Contamination at a Global and Local Scale," Journal of Environmental Protection, Vol. 4 No. 6, 2013, pp. 595-601. doi: 10.4236/jep.2013.46069.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. de la Torre, I. Iglesias, M. Carballo, P. Ramírez, M. J. Munoz, “An Approach for Mapping the Vulnerability of European Union Soils to Antibiotic Contamination,” Science of the Total Environment, Vol. 414, 2012, pp. 672-679. doi:10.1016/j.scitotenv.2011.10.032
[2] A. K. Sarmah, M. T. Meyer and A. B. A. Boxall, “A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment,” Chemosphere, Vol. 65, No. 5, 2006, pp. 725-759. doi:10.1016/j.chemosphere.2006.03.026
[3] R. Wei, F. Ge, S. Huang and R. Wang, “Occurrence of Veterinary Antibiotics in Animal Wastewater around Farms in Jiangsu Province, China,” Chemosphere, Vol. 82, No. 10, 2011, pp. 1408-1414. doi:10.1016/j.chemosphere.2010.11.067
[4] A. B. A. Boxall, L. A. Fogg, P. Kay, P. A. Blackwel, E. J. Pemberton and A. Crosxford, “Priorisation of Veterinary Medicines in the UK Environment,” Toxicology Letters, Vol. 142, No. 3, 2003, pp. 207-218. doi:10.1016/S0378-4274(03)00067-5
[5] A. Capelton, C. Courage, P. Rumsby, P. Holmes, E. Stutt, A. B. Boxall and L. S. Levy, “Prioritising Veterinary Medicines According to Their Potential Indirect Human Exposure and Toxicity Profiles,” Toxicology Letters, Vol. 163, No. 3, 2006, pp. 213-223. doi:10.1016/j.toxlet.2005.10.023
[6] Y. Kima, J. Junga, M. Kimb, J. Parkc, A. B. A. Boxall and K. Choi, “Prioritizing Veterinary Pharmaceuticals for Aquatic Environment in Korea,” Environmental Toxicology and Pharmacology, Vol. 26, No. 2, 2008, pp. 167-176. doi:10.1016/j.etap.2008.03.006
[7] N. H. Batjes and E. M. Bridges, “Soil Vulnerability to Pollution in Europe,” Soil Use and Management, Vol. 9, 1993, pp. 25-29. doi:10.1111/j.1475-2743.1993.tb00923.x
[8] N. H. Batjes, V. W. P. Van Engelen and L. R. Oldeman, “Proposed Assessment of the Vulnerability of European Soils to Pollution Using a Soter Shell Approach,” Land Degradation & Development, Vol. 4, No. 4, 1993, pp. 223-231. doi:10.1002/ldr.3400040405
[9] C. R. Meinardi, A. H. W. Beusen, M. J. S. Bollen, O. Klepper and W. J. Willems, “Vulnerability to Diffuse Pollution and Average Nitrate Contamination of European Soils and Groundwater,” Water Science and Technology, Vol. 31, No. 8, 1995, pp. 159-165. doi:10.1016/0273-1223(95)00368-W
[10] C. Giupponi and I. Vladimirova, “A GIS-Based Screening Model for Assessing Agricultural Pressures and Impacts on Water Quality on a European Scale,” Science of the Total Environment, Vol. 359, No. 1-3, 2006, pp. 57-75. doi:10.1016/j.scitotenv.2005.07.013
[11] A. Pistocchi, P. Vizcaino and M. Hauck, “A GIS Model-Based Screening of Potential Contamination of Soil and Water by Pyrethroids in Europe,” Journal of Environmental Management, Vol. 90, No. 11, 2009, pp. 3410-3421. doi:10.1016/j.jenvman.2009.05.020
[12] W. De Vries, P. F. A. M. Romkens and L. T. C. Bonten, “Spatially Explicit Integrated Risk Assessment of Present Soil Concentrations of Cadmium, Lead, Copper and Zinc in the Netherlands,” Water Air and Soil Pollution, Vol. 191, No. 1-4, 2008, pp. 199-215. doi:10.1007/s11270-008-9617-z
[13] J. Caudeville, R. Bonnard, C. Boudet, S. Denys, G. Govaert and A. Cicolella, “Development of a Spatial Stochastic Multimedia Exposure Model to Assess Population Exposure at a Regional Scale,” Science of the Total Environment, Vol. 15, No. 432, 2012, pp. 297-308. doi:10.1016/j.scitotenv.2012.06.001
[14] M. K. Schneider, C. Stamm and K. Fenner, “Selecting Scenarios to Assess Exposure of Surface Waters to Veterinary Medicines in Europe,” Environmental Science & Technology, Vol. 41, No. 13, 2007, pp. 4669-4676. doi:10.1021/es062486a
[15] B. Molinuevo, “Anaerobic Digestion of Livestock Wastes: Vegetable Residues as Co-Substrate and Digestate Post-Treatment,” Ph.D. Dissertation, University of Valladolid, 2010.
[16] ISO 15175, “Soil Quality—Characterization of Soil Related to Groundwater Protection,” ISO Copyright Office, CH-1211, Geneva 20, 2nd Edition, 2004, p. 60.
[17] W. Wint and T. Robinson, “Gridded Livestock of the World. Rome, Italy: Food and Agricultural Organisation,” 2007. http://www.fao.org/AG/againfo/resources/en/glw/GLW_dens.html
[18] R. J. A. Jones, R. Hiederer, E. Rusco, P. J. Loveland and L. Montanarella, “The Map of Organic Carbon in Topsoils in Europe,” European Soil Bureau Research Report No. 17, Office for Official Publications of the European Communities, Luxembourg, 2004, 26 p.
[19] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones and A. Jarvis, “Very High Resolution Interpolated Climate Surfaces for Global Land Areas,” International Journal of Climatology, Vol. 25, No. 15, 2005, pp. 1965-1978. doi:10.1002/joc.1276
[20] European Environment Agency, “Dominant Landscape Types of Europe, Based on CORINE Land Cover 2000,” 2008. http://www.eea.europa.eu/data-and-maps/figures/dominant-landscapetypes-of-europe-based-on-corine-land-cover-2000-1
[21] ING, “Sistema de Información de Ocupación del Suelo en Espana. Estructura de la base de Datos SIOSE—MF2,” Versión 2.1, Equipo Técnico Nacional SIOSE, 2011. 31 p. http://www.ign.es/siose/Documentacion/Modelo_de_datos_SIOSE/Base_de_datos_SIOSE2005_MF2_%20v2.1.pdf
[22] SIOSE, “Documento Técnico SIOSE 2005,” Versión 2, D. G. Instituto Geográfico Nacional, Servicio de Ocupación del Suelo, S.G. de Cartografía. http://www.ign.es/siose/Documentacion/Guia_Tecnica_SIOSE/Doc_tecnico_SIOSE2005_v2.pdf
[23] N. Valcarcel, G. Villa, A. Arozarena, L. Garcia-Asensio, M. E. Caballlero, A. Porcuna, E. Domenech, J. J. Peces, “SIOSE, a Successful Test Bench towards Harmonization and Integration of Land Cover/Use Information as Environmental Reference Data,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 37, No. B8, 2008, pp. 1159-1164.
[24] M. Alario, “Paisajes de los Secanos Cerealistas de Castile and León,” Polígonos, Revista de Geografía, Vol. 21, 2011, pp. 19-49.
[25] J. Briz, “Evaluation of the Common Market Organization in the Cereal Sector. National Report-Spain,” 2005. http://ec.europa.eu/agriculture/eval/reports/cereals/spain.pdf
[26] MAGRAMA, “Actividades del Ministerio Durante 2011,” 2011. http://www.magrama.gob.es/es/ministerio/servicios/publicaciones/ii.i._ganader%C3%ADa_tcm7-213203.pdf
[27] A. L. Labajo, “Analysis of Temporal Behavior of Climate Variables Using Artificial Neural Networks: An Application to Mean Monthly Maximum Temperatures on the Spanish Central Plateau,” Atmósfera, Vol. 24, No. 3, 2011, pp. 267-285.
[28] J. L. Labajo, A. L. Labajo, M. Egido, Q. Martín, C. Morales and M. T. Ortega, “Analysis of the Maximum Daily Temperature Evolution on the Spanish Central Plateau,” Atmósfera, Vol. 25, No. 3, 2012, pp. 235-252.
[29] R. J. A. Jones, R. Hiederer, E. Rusco, P. J. Loveland and L. Montanarella, “Estimating Organic Carbon in the Soils of Europe for Policy Support,” European Journal of Soil Science, Vol. 56, No. 5, 2005, pp. 655-671. doi:10.1111/j.1365-2389.2005.00728.x
[30] A. Passuello, O. Cadiach, Y. Perez and M. Schuhmacher, “A Spatial Multicriteria Decision Making Tool to Define the Best Agricultural Areas for Sewage Sludge Amendment,” Environment International, Vol. 38, No. 1, 2012, pp. 1-9. doi:10.1016/j.envint.2011.07.013

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.