Arabidopsis Transcription Factor WRKY33 Is Involved in Drought by Directly Regulating the Expression of CesA8

Abstract

Arabidopsis (Arabidopsis thaliana) WRKY33 is a key transcription factor in pathogen-induced defense signaling, but its function in abiotic stresses remains largely unclear. In this study, we report on the use of a reverse-genetic approach, as well as a yeast (Saccharomyces cerevisiae) expression system, to determine the role of WRKY33 in drought. A T-DNA insertion deletion mutant of WRKY33 is more sensitive to dehydration. Through genome-wide screening the target genes of WRKY33 in yeast, we identified 23 candidate genes including a drought tolerance gene CesA8. Further results revealed that WRKY33 repressed CesA8 expression through binding to the W-box elements of CesA8 distal promoter region and probably interacting with the transcriptional activator of CesA8, MYB46. These findings revealed the primary molecular mechanism underlying the function of WRKY33 in response to drought

Share and Cite:

X. Wang, B. Du, M. Liu, N. Sun and X. Qi, "Arabidopsis Transcription Factor WRKY33 Is Involved in Drought by Directly Regulating the Expression of CesA8," American Journal of Plant Sciences, Vol. 4 No. 6A, 2013, pp. 21-27. doi: 10.4236/ajps.2013.46A004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Eulgem, P. J. Rushton, S. Robatzek and I. E. Somssich, “The WRKY Super Family of Plant Transcription Factors,” Trends in Plant Science, Vol. 5, No. 5, 2000, pp. 199-206. doi:10.1016/S1360-1385(00)01600-9
[2] P. J. Rushton, I. E. Somssich, P. Ringler and Q. J. Shen, “WRKY Transcription Factors,” Trends in Plant Science, Vol. 15, No. 5, 2010, pp. 247-258. doi:10.1016/j.tplants.2010.02.006
[3] B. ülker and I. E. Somssich, “WRKY Transcription Factors: From DNA Binding towards Biological Function,” Current Opinion in Plant Biology, Vol. 7, No. 5, 2004, pp. 491-498. doi:10.1016/j.pbi.2004.07.012
[4] Z. Zheng, S. A. Qamar, Z. Chen and T. Mengiste, “Arabidopsis WRKY33 Transcription Factor Is Required for Resistance to Necrotrophic Fungal Pathogens,” The Plant Journal, Vol. 48, No. 4, 2006, pp. 592-605. doi:10.1111/j.1365-313X.2006.02901.x
[5] B. Lippok, R. P. Birkenbihl, G. Rivory, J. Brümmer, E. Schmelzer, E. Logemann and I. E. Somssich, “Expression of AtWRKY33 Encoding a Pathogenor PAMP-Responsive WRKY Transcription Factor Is Regulated by a Composite DNA Motif Containing W Box Elements,” Molecular Plant-Microbe Interaction, Vol. 20, No. 4, 2007, pp. 420-429. doi:10.1094/MPMI-20-4-0420
[6] J. L. Qiu, B. K. Fiil, K. Petersen, H. B. Nielsen, C. J. Botanga, S. horgrimsen, K. Palma, M. C. Suarez-Rodriguez, S. Sandbech-Clausen, J. Lichota, P. Brodersen, K. D. Grasser, O. Mattsson, J. Glazebrook, J. Mundy and M. Petersen, “Arabidopsis MAP Kinase 4 Regulates Gene Expression through Transcription Factor Release in the Nucleus,” EMBO Journal, Vol. 27, No. 16, 2008, pp. 2214-2221. doi:10.1038/emboj.2008.147
[7] G. Mao, X. Meng, Y. Liu, Z. Zheng, Z. Chen and S. Zhang, “Phosphorylation of a WRKY Transcription Factor by Two Pathogen Responsive MAPKs Drives Phytoalex in Biosynthesis in Arabidopsis,” The Plant Cell, Vol. 23, No. 4, 2011, pp. 1639-1653. doi:10.1105/tpc.111.084996
[8] R. P. Birkenbihl, C. Diezel and I. E. Somssich, “Arabidopsis WRKY33 Is A Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis Cinerea Infection,” Plant Physiology, Vol. 159, No. 1, 2012, pp. 266-285. doi:10.1104/pp.111.192641
[9] Y. Jiang and M. K. Deyholos, “Comprehensive Transcriptional Profiling of NaCl-Stressed Arabidopsis Roots Reveals Novel Classes of Responsive Genes,” BMC Plant Biology, Vol. 6, 2006, p. 25. doi:10.1186/1471-2229-6-25
[10] Y. Jiang and M. K. Deyholos, “Functional Characterization of Arabidopsis NaCl-Inducible WRKY25 and WRKY33 Transcription Factors in Abiotic Stresses,” Plant Molecular Biology, Vol. 69, No. 1-2, 2009, pp. 91-105. doi:10.1007/s11103-008-9408-3
[11] S. Li, Q. Fu, L. Chen, W. Huang and D. Yu, “Arabidopsis Thaliana WRKY25, WRKY26, and WRKY33 Coordinate Induction of Plant Thermotolerance,” Planta, Vol. 233, No. 6, 2011, pp. 1237-1252. doi:10.1007/s00425-011-1375-2
[12] M. Weber, A. Trampczynska and S. Clemens, “Comparative Transcriptome Analysis of Toxic Metal Responses in Arabidopsis Thaliana and the Cd2+-Hypertolerant Facultative Metallophyte Arabidopsis Halleri,” Plant Cell and Environment, Vol. 29, No. 5, 2006, pp. 950-963. doi:10.1111/j.1365-3040.2005.01479.x
[13] Y. Yuan, H. Wu, N. Wang, J. Li, W. Zhao, J. Du, D. Wang and H. Q. Ling, “FIT Interacts with AtbHLH38 and AtbHLH39 in Regulating Iron Uptake Gene Expression for Iron Homeostasis in Arabidopsis,” Cell Research, Vol. 18, No. 3, 2008, pp. 385-397. doi:10.1038/cr.2008.26
[14] J. Zeng, J. Yan, T. Wang, D. Mosbrook-Davis, K. T. Dolan, R. Christensen, G. D. Stormo, D. Haussler, R. H. Lathrop, R. K. Brachmann and S. M. Burgess, “Genome Wide Screens in Yeast to Identify Candidate Binding Sites and Target Genes of DNA-Binding Proteins,” Nucleic Acids Research, Vol. 36, No. 1, 2008, p. e8. doi:10.1093/nar/gkm1117
[15] N. G. Taylor, S. Laurie and S. R. Turner, “Multiple Cellulose Synthase Catalytic Subunits Are Required for Cellulose Synthesis in Arabidopsis,” The Plant Cell, Vol. 12, No. 12, 2000, pp. 2529-2539. doi:10.1105/tpc.12.12.2529
[16] Z. Chen, X. Hong, H. Zhang, Y. Wang, X. Li, J. K. Zhu and Z. Gong, “Disruption of the Cellulose Synthase Gene, AtCesA8/IRX1, Enhances Drought and Osmotic Stress Tolerance in Arabidopsis,” The Plant Journal, Vol. 43, No. 2, 2005, pp. 273-283. doi:10.1111/j.1365-313X.2005.02452.x
[17] W. C. Kim, J. H. Ko, J. Y. Kim, J. M. Kim, H. J. Bae and K. H. Han, “MYB46 Directly Regulates the Gene Expression of Secondary Wall-Associated Cellulose Synthases in Arabidopsis,” The Plant Journal, 2012. doi:10.1111/j.1365-313X.2012.05124.x
[18] M. Yamaguchi, N. Mitsuda, M. Ohtani, M. Ohme-Takagi, K. Kato and T. Demura, “Vascular-Related NAC-Domain7 Directly Regulates the Expression of a Broad Range of Genes for Xylem Vessel Formation,” The Plant Journal, Vol. 66, No. 4, 2011, pp. 579-590. doi:10.1111/j.1365-313X.2011.04514.x
[19] C. Hernández-Blanco, D. X. Feng, J. Hu, A. Sánchez-Vallet, L. Deslandes, F. Llorente, M. Berrocal-Lobo, H. Keller, X. Barlet, C. Sánchez-Rodríguez, L. K. Anderson, S. Somerville, Y. Marco and A. Molina, “Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance,” The Plant Cell, Vol. 19, No. 3, 2007, pp. 890-903. doi:10.1105/tpc.106.048058

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.