Share This Article:

n + 1 Dimensional Gravity Duals to Quantum Criticalities with Spontaneous Symmetry Breaking

Abstract Full-Text HTML XML Download Download as PDF (Size:468KB) PP. 738-745
DOI: 10.4236/jmp.2013.46100    2,744 Downloads   3,970 Views   Citations

ABSTRACT

We reexamine the charged AdS domain wall solution to the Einstein-Abelian-Higgs model proposed by Gubser et al. as holographic superconductors at quantum critical points and comment on their statement about the uniqueness of gravity solutions. We generalize their explorations from 3 + 1 dimensions to arbitrary n + 1 Ds and find that the n + 1 ≥ 5D charged AdS domain walls are unstable against electric perturbations.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Zeng and K. Zhao, "n + 1 Dimensional Gravity Duals to Quantum Criticalities with Spontaneous Symmetry Breaking," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 738-745. doi: 10.4236/jmp.2013.46100.

References

[1] A. Vilenkin and E. P. S. Shellard, “Cosmic Strings and Other Topological Defects,” Cambridge University Press, Cambridge, 2000.
[2] M. Cveti and H. H. Soleng, Physics Reports, Vol. 282, 1997, pp. 159-223. doi:10.1016/S0370-1573(96)00035-X
[3] F. Pardo and F. De La Cruz, Physical Review Letters, Vol. 78, 1997, pp. 4633-4636. doi:10.1103/PhysRevLett.78.4633
[4] M. J. P. Gingras and D. A. Huse, Physical Review B, Vol. 53, 1996, pp. 15193-15200. doi:10.1103/PhysRevB.53.15193
[5] X.-L. Qi, T. L. Hughes, S. Raghu and S.-C. Zhang, Physical Review Letters, Vol. 102, 2009, Article ID: 187001. doi:10.1103/PhysRevLett.102.187001
[6] J. C. Y. Teo and C. L. Kane, Physical Review B, Vol. 82, 2010, Article ID: 115120. doi:10.1103/PhysRevB.82.115120
[7] S. Gubser and F. Rocha, Physical Review Letters, Vol. 102, 2009, Article ID: 061601. doi:10.1103/PhysRevLett.102.061601
[8] S. Gubser, S. Pufu and F. Rocha, Physical Letters B, Vol. 683, 2010, pp. 201-204. doi:10.1016/j.physletb.2009.12.017
[9] S. Gubser, F. Rocha and P. Talavera, Journal of High Energy Physics, Vol. 10, 2010, p. 87. doi:10.1007/JHEP10(2010)087
[10] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Physical Review B, Vol. 60, 1999, Article ID: 064018. doi:10.1103/PhysRevD.60.064018
[11] W. H. Press, et al., “Numerical Recipes in C,” Cambridge University Press, Cambridge, 1992.
[12] S. Hartnoll, C. Herzog and G. Horowitz, Journal of High Energy Physics, Vol. 12, 2008, p. 15. doi:10.1088/1126-6708/2008/12/015
[13] G. Horowitz and M. Roberts, Journal of High Energy Physics, Vol. 11, 2009, p. 15. doi:10.1088/1126-6708/2009/11/015
[14] D. van der Marel, et al., Nature, Vol. 425, 2003, pp. 271-274. doi:10.1038/nature01978
[15] J. L. Tallon and J. W. Loram, Physica C: Superconductivity, Vol. 349, 2001, pp. 53-68. doi:10.1016/S0921-4534(00)01524-0
[16] S. Sachdev, “Quantum Phase Transitions, 1.1,” 2nd Edition, Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9780511973765

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.