Assessment of the Elasticity of Erythrocytes in Different Physiological Fluids by Laser Traps

Abstract

In the study of the mechanical properties of the erythrocytes (red blood cells-RBCs) the blood sample is commonly diluted in fluids that do not compromise the integrity of the cells. Fetal bovine serum (FBS), newborn bovine serum (NBBS), and phosphate buffer (PBS) solution with a concentration that can provide the right osmotic pressure are fluids commonly used to dilute the blood samples in such studies. Here we have presented the effect of these fluids on the elastic properties of the RBCs that we studied using laser traps. Two laser traps are directly used to trap and deform the cell by exerting a force distributed on the entire cell. The relative changes in size of the cell are studied as a function of the applied force to investigate any effects on the mechanical deformability of RBCs when the cells are suspended in these fluids. The results have shown that the elasticity of the RBCs in the NBBS is not statistically different from the elasticity of the cells in the PBS solution; however the results for the elasticity of the cells in FBS are found to be significantly higher.

Share and Cite:

T. Barnes, A. Shulman, A. Farone, M. Farone and D. Erenso, "Assessment of the Elasticity of Erythrocytes in Different Physiological Fluids by Laser Traps," Optics and Photonics Journal, Vol. 3 No. 2, 2013, pp. 211-216. doi: 10.4236/opj.2013.32034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Madigan and P. Malik, “Pathophysiology and Therapy for Haemoglobinopathies; Part I: Sickle Cell Disease,” Expert Reviews in Molecular Medicine, Vol. 8, No. 9, 2006, pp. 1-23. doi:10.1017/S1462399406010659
[2] A. Ashkin, “Applications of Laser Radiation Pressure,” Science, Vol. 210, No. 4474, 1980, pp. 1081-1088. doi:10.1126/science.210.4474.1081
[3] A. Ashkin, J. M. Dziedzic and T. Yamane, “Optical Trap ping and Manipulation of Single Cells Using Infrared Laser beams,” Nature, Vol. 330, No. 6150, 1987, pp. 769-771. doi:10.1038/330769a0
[4] F. Bordeleau, J. Bessard, N. Marceau and Y. Sheng, “Measuring Integrated Cellular Mechanical Stress Response at Focal Adhesions by Optical Tweezers,” Journal of Bio medical Optics, Vol. 16, No. 9, 2011, Article ID: 095005. doi:10.1117/1.3626864
[5] S. Rancourt-Grenier, M. Wei, J. Bai, A. Chiou, P. Bareil, P. Duval and Y. Sheng, “Dynamic Deformation of Red Blood Cell in Dual-trap Optical Tweezers,” Optics Ex press, Vol. 18, No. 10, 2010, pp. 10462-10472. doi:10.1364/OE.18.010462
[6] D. Erenso, A. Shulman, J. Curtis and S. Elrod, “Formation of Synthetic Structures with Micron Size Silica Beads Using Optical Tweezer,” Journal of Modern Optics, Vol. 54, No. 10, 2007, pp. 1529-1536. doi:10.1080/09500340601183664
[7] M. M. Brandao, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa and M. L. Barjas-Castro, “Elastic Properties of Stored Red Blood Cells from Sickle Trait Donor Units,” Vox Sanguinis, Vol. 85, No. 3, 2003, pp. 213-215. doi:10.1046/j.1423-0410.2003.00344.x
[8] A. Pellizzaro, G. Welker, D. Scott, R. Solomon, J. Cooper, A. Farone, M. Farone, R. S. Mushi, M. del Pilar Aguinaga and D. Erenso, “Direct Laser Trapping for Measuring the Behavior of Transfused Erythrocytes in a Sickle Cell Anemia Patient,” Biomedical Optics Express, Vol. 3, No. 9, 2012, pp. 2190-2199. doi:10.1364/BOE.3.002190
[9] M. M. Brandao, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar and S. T. Saad. “Optical Tweezers for Measuring Red Blood Cell Elasticity: Application to the Study of Drug Response in Sickle Cell Disease,” European Journal of Haematology, Vol. 70, No. 4, 2003, pp. 207-211. doi:10.1034/j.1600-0609.2003.00027.x
[10] S. Henon, G. Lenormand, A. Richert and F. Gallet, “A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers,” Bio physical Journal, Vol. 76, No. 2, 1999, pp. 1145-1151. doi:10.1016/S0006-3495(99)77279-6
[11] J. Sleep, D. Wilson, R. Simmons and W. Gratzer, “Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders,” Biophysical Journal, Vol. 88, No. 6, 1999, pp. 3085-3095. doi:10.1016/S0006-3495(99)77139-0
[12] G. Lenormand, S. Henon, A. Richert, J. Simeon and F. Gallet, “Direct Measurement of the Area Expansion and Shear Moduli of the Human Red Blood Cell Membrane Skeleton,” Biophysical Journal, Vol. 81, No. 1, 2001, pp. 43-56. doi:10.1016/S0006-3495(01)75678-0
[13] J. A. Dharmadhikari, S. Roy, A. Dharmadhikari, K. S. Sharma and M. Mathur, “Torque-Generating Malaria-Infected Red Blood Cells in an Optical Trap,” Optics Express, Vol. 12, No. 6, 2004, pp. 1179-1184. doi:10.1364/OPEX.12.001179
[14] C. T. Lim, M. Dao, S. Suresh, C. H. Sow and K. T. Chew. “Large Deformation of Living Cells Using Laser Traps,” Acta Materialia, Vol. 52, No. 7, 2004, pp. 1837-1845. doi:10.1016/j.actamat.2004.05.016
[15] K. Svoboda and S. M. Block. “Biological Applications of Optical Forces,” Annual Review of Biophysics and Bio molecular Structure, Vol. 23, 1994, pp. 247-285. doi:10.1146/annurev.bb.23.060194.001335
[16] S. Ermilov and B. Anvari, “Dynamic Measurements of Transverse Optical Trapping Force in Biological Applications,” Annals of Biomedical Engineering, Vol. 32, 2004, pp. 1016-1026.
[17] J. B. Collip, “Osmotic Pressure of Serum and Erythrocytes in Various Vertebrate Types as Determined by the Cryoscopic Method,” Journal of Biological Chemistry, Vol. 42, 1920, pp. 221-226.
[18] J. Q. Yao, M. P. Laurent, T. S. Johnson, C. R. Blanchard and R. D. Crowninshield, “The Influences of Lubricant and Material on the Polymer/CoCr Sliding Friction,” Wear, Vol. 255, No. 1-6, 2003, pp. 780-784. doi:10.1016/S0043-1648(03)00180-7
[19] T. J. Hemingway, E. A. Savitsky and D. F. Kupas, “Hyperviscosity Syndrome,” eMedicine, 2012. http://emedicine.medscape.com/article/780258-overview
[20] W. G. Lee, H. Bang, J. Park, S. Chung, K. Cho, C. Chung, D.-C. Han and J. K. Chang, “Combined Microchannel Type Erythrocyte Deformability Test with Optical Tweezers,” Proceedings of the SPIE, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, Vol. 6088, 2006, Article ID: 608813. doi:10.1117/12.647537
[21] G. Liao, P. B. Bareil, Y. Sheng and A. Chiou, “One-Dimensional Jumping Optical Tweezers for Optical Stretching of Bi-Concave Human Red Blood Cells,” Optics Ex press, Vol. 16, No. 3, 2008, pp. 1996-2004. doi:10.1364/OE.16.001996
[22] A. Ashkin, “Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Bio physical Journal, Vol. 61, No. 2, 1992, pp. 569-582. doi:10.1016/S0006-3495(92)81860-X
[23] F. P. Bolin, L. E. Preuss, R. C. Taylor and R. J. Ference, “Refractive Index of Some Mammalian Tissues Using a Fiber Optical Cladding Method,” Applied Optics, Vol. 28, No. 12, 1989, pp. 2297-2303. doi:10.1364/AO.28.002297
[24] J. J. Gu, Y. F. Yu, E. P. Li, S. H. Ng, P. H. Yap, X. Q. Zhou, T. H. Cheng and A. Q. Liu, “Real-Time Measurement of Cellular Refractive Index and Thickness Using Cell Culture Chip,” The Proceedings of TAS 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Diego, 12-16 October 2008, pp. 1873-1875.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.