High Energy Emission from Magnetar Due to Giant Flare

Abstract

We propose a theoretical model for magnetar giant flare to explain the flaring activity on 2004 December 27 from SGR1806-20 comprehensively. A global rearrangement is expected by the magnetic reconnection that requires explaining the giant SGR flares. In this paper we propose two regions of flares: preflare on the surface of magnetar and main burst at a distance of light cylinder radius. Acquiring the maximum potential drop on the magnetar surface, adopting space charge limited flow model, and using magnetic field B 1015 G, the luminosities of flare energies release for the preflare phase and main burst phase are found to be in the order of 1041 erg·sˉ1 and 1044 erg·sˉ1 respectively, conforming to magnetar burst energy and flare temperature is determined by considering black body radiation.

Share and Cite:

A. Kader and K. Duorah, "High Energy Emission from Magnetar Due to Giant Flare," International Journal of Astronomy and Astrophysics, Vol. 3 No. 2, 2013, pp. 174-179. doi: 10.4236/ijaa.2013.32019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. C. Duncan and C. Thompson, “Formation of Very Strongly Magnetized Neutron Stars-Implication for Gamma-Ray Bursts,” Astrophysical Journal, Vol. 392, No. 1, 1992, pp. L9-L13. doi:10.1086/186413
[2] C. Thompson and R. C. Duncan, “The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II: Quiescent Neutrino, X-Ray, and Alfven Wave Emission,” Astrophysical Journal, Vol. 473, No. 1, 1996, p. 322. doi:10.1086/178147
[3] T. Tajima and K. Shibata, “Plasma Astrophysics,” Addison-Wesley, Reading, 1997.
[4] C. Thompson and R. C. Duncan, “The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars-I: Radiative Mechanism for Outbursts,” Monthly Notices of the Royal Astronomical Society, Vol. 275, No. 2, 1995, pp. 255-300.
[5] M. Lyutikov, “Radio Emission from Magnetars,” Astrophysical Journal, Vol. 580, No. 1, 2002, pp. L65-L68. doi:10.1086/345493
[6] C. Thompson and R. C. Duncan, “The Giant Flare of 1998 August 27 from SGR1900+14, II: Radiative Mechanism and Physical Constraints on the Source,” Astrophysical Journal, Vol. 561, No. 2, 2001, pp. 980-1005. doi:10.1086/323256
[7] C. Thompson, R. C. Duncan, P. M. Woods, C. Kouveliotou, M. H. Finger and van Paradijs, “Physical Mechanisms for the Variable Spin-Down and Light Curve of SGR1900+14,” Astrophysical Journal, Vol. 543, No. 1, 2000, pp. 340-350. doi:10.1086/317072
[8] C. Thompson, M. Lyutikov and S. R. Kulkarni, “Electrodynamics of Magnetars: Implications for the Persistent XRay Emission and Spin-Down of the SGRs and AXPs,” Astrophysical Journal, Vol. 574, No. 1, 2002, pp. 332-355. doi:10.1086/340586
[9] K. Shibata and T. Yokoyama, “Origin of the Universal Correlation between the Flare Temperature and the Emission Measure for Solar and Stellar Flares,” Astrophysical Journal, Vol. 526, No. 1, 1999, pp. L49-L52. doi:10.1086/312354
[10] P. Goldreich and W. H. Julian, “Pulsar Electrodynamics,” Astrophysical Journal, Vol. 157, No. 2, 1969, p. 869. doi:10.1086/150119
[11] E. T. Scharlemann, J. Arons and W. M. Fawley, “Potential Drops above Pulsar Polar Caps-Ultrarelativistic Particle Acceleration along the Curved Magnetic Field,” Astrophysical Journal, Vol. 222, No. 1, 1978, pp. 297-316. doi:10.1086/156144
[12] E. P. Mazets, S. V. Golenetskii, V. N. Ilinskii, R. L. Aptekar and I. A. Guryan, “Observations of a Flaring X-Ray Pulsar in Dorodo,” Nature, Vol. 282, 1979, pp. 587-589.
[13] K. Hurley, et al., “A Giant Periodic Flare from the Soft γ-Ray Repeater SGR1900+14,” Nature, Vol. 397, No. 6714, 1999, pp. 41-43. doi:10.1038/16199
[14] D. M. Palmer, et al., “A Giant Gamma-Ray Flare from the Magnetars SGR1806-20,” Nature, Vol. 434, No. 7037, 2005, pp. 1107-1109. doi:10.1038/nature03525
[15] S. E. Boggs, et al., “The Giant Flare of 2004 December 27 from SGR1806-20,” Astrophysical Journal, Vol. 661, No. 1, 2007, pp. 458-467. doi:10.1086/516732
[16] Y. Masada, “Dead Zone Formation and Non-Steady Hyperaccretion in Collapsar Disks,” Proceedings of the International Astronomical Union, Vol. 4, No. S259, 2009, pp. 119-120. doi:10.1017/S1743 921309030269
[17] W. A. Baan and A. Treves, “On the Pulsation of X-Ray Sources,” Astronomy & Astrophysics, Vol. 22, 1973, p. 421.
[18] E. Flowers and M. A. Ruderman, “Evolution of Pulsar Magnetic Fields,” Astrophysical Journal, Vol. 215, No. 1, 1977, pp. 302-310. doi:10.1086/155359
[19] A. G. Muslimov and A. I. Tsygan, “General Relativistic Electric Potential Drops above Pulsar Polar Cap,” Monthly Notices of the Royal Astronomical Society, Vol. 255, No. 3, 1992, pp. 61-70.
[20] B. Rudak, J. Dyks and T. Bulik, “High-Energy Radiation from Pulsars: A Challenge to Polar-Cap Models, Prpc. of 270. WE-Heraeus Seminar, Neutron Stars, Pulsars and Supernova Remnants,” 2002.
[21] E. Priest and T. Forbes, “Magnetic Reconnection: MHD Theory and Applications,” Cambridge University Press, New York, 2000. doi:10.1017/CBO9780511525087
[22] D. Lai, “Matter in Strong Magnetic Fields,” Review of Modern Physics, Vol. 73, No. 3, 2001, pp. 629-661. doi:10.1103/RevModPhys.73.629
[23] B. Zhang and A. K. Harding, “Full Polar Cap Cascade Scenario: Gamma-Ray and X-Ray Luminosities from SpinPowered Pulsars,” Astrophysical Journal, Vol. 535, No. 2, 2000, pp. 1150-1171. doi:10.1086/308598
[24] A. Spitkovsky and J. Arons, “Simulations of Pulsar Wind Formation,” Astronomical Society of the Pacific Conference Series, 2002.
[25] C. Thompson and A. M. Beloborodov, “High-Energy Emission from Magnetars,” Astrophysical Journal, Vol. 634, No. 1, 2005, pp. 565-569. doi:10.1086/432245

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.