Effects of Gamma Irradiation on the Kinetics of the Adsorption and Desorption of Hydrogen in Carbon Microfibres

Abstract

In this study, three types of carbon fibres were used, they were ex-polyacrylonitrile carbon fibres with high bulk modulus, ex-polyacrylonitrile fibres with high strength, and vapour grown carbon fibres. All the samples were subjected to a hydrogen adsorption process at room temperature in an over-pressured atmosphere of 25 bars. The adsorption process was monitored through electrical resistivity measurements. As conditioning of the fibres, a chemical activation by acid etching followed by γ-ray irradiation with 60Co radioisotopes was performed. The surface energy was determined by means of the sessile drop test. Both conditioning treatments are supplementary; the chemical activation works on the outer surface and the γ-irradiation works in the bulk material as well. Apparently, the most significant parameter for hydrogen storage is the crystallite size. From this point of view, the most convenient materials are those with small grain size because hydrogen is accumulated mainly in the grain boundaries.

Share and Cite:

C. Mota, M. Culebras, A. Cantarero, A. Madroñero, C. Gómez, J. Amo and J. Robla, "Effects of Gamma Irradiation on the Kinetics of the Adsorption and Desorption of Hydrogen in Carbon Microfibres," Advances in Materials Physics and Chemistry, Vol. 3 No. 2, 2013, pp. 153-160. doi: 10.4236/ampc.2013.32021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. McDowall and M. Eames, “Towards a Sustainable Hydrogen Economy: A Multi-Criteria Sustainability Appraisal of Competing Hydrogen Futures,” International Journal of Hydrogen Energy, Vol. 32, No. 18, 2007, pp. 4611-4626. doi:10.1016/j.ijhydene.2007.06.020
[2] K. L. Lim, H. Kazemian, Z. Yaakob and W. R. W. Daud, “Solid-State Materials and Methods for Hydrogen Storage: A Critical Review,” Chemical Engineering and Technology, Vol. 33, No. 2, 2010, pp. 213-226. doi:10.1002/ceat.200900376
[3] R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen and G. Wolf, “Hydrogen Storage by Carbon Materials,” Journal of Power Sources, Vol. 159, No. 2, 2006, pp. 781-801. doi:10.1016/j.jpowsour.2006.03.047
[4] E. Raymundo-Piñero, D. Cazorla-Amorós, A. LinaresSolano, S. Delpeux, E. Frackowiak, K. Szostak and F. Béguin, “High Surface Area Carbon Nanotubes Prepared by Chemical Activation,” Carbon, Vol. 40, No. 9, 2002, pp. 1597-1617. doi:10.1016/S0008-6223(02)00134-3
[5] D. Qu, “Investigation of Hydrogen Physisorption Active Sites on the Surface of Porous Carbonaceous Materials,” Chemistry—A European Journal, Vol. 14, No. 3, 2008, pp. 1040-1046. doi:10.1002/chem.200701042
[6] M. A.Obolensky, A. V. Basteev and L. A. Bazyma, “Hydrogen Storage in Irradiated Low-Dimensional Structures,” Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 19, No. 1-2, 2011, pp. 133-136. doi:10.1080/1536383X.2010.490134
[7] S. Gupta, B. L. Weiss, B. R. Weiner, L. Pilione, A. Badzian and G. Morell, “Electron Field Emission Properties of Gamma Irradiated Microcrystalline Diamond and Nanocrystalline Carbon Thin Films,” Journal of Applied Physics, Vol. 92, No. 6, 2002, pp. 3311-3317. doi:10.1063/1.1499996
[8] K. Hanada, H. Shiono and K. Matsuzaki, “Hydrogen Uptake of Carbon Nanofiber under Moderate Temperature and Low Pressure,” Diamond and Related Materials, Vol. 12, No. 3-7, 2003, pp. 874-877. doi:10.1016/S0925-9635(02)00360-6
[9] F. Suárez-García, J. Nauroy, A. Martínez-Alonso and J. M. D. Tascón, “Thermogravimetric Studies on the Activation of Nanometric Carbon Fibers,” Journal of Thermal Analysis and Calorimetry, Vol. 79, No. 3, 2005, pp. 525528. doi:10.1007/s10973-005-0573-1
[10] J. Q. Li , Y. D. Huang, S. Y. Fu, L. H. Yang, H. Qua and G. Wu, “Study on the Surface Performance of Carbon Fibres Irradiated by G-ray under Different Irradiation Dose,” Applied Surface Science, Vol. 256, No. 7, 2010, pp. 20002004. doi:10.1016/j.apsusc.2009.09.035
[11] A. P. Voit, E. A. Evard and I. E. Gabis, “Effect of Sorbed Hydrogen on the Conductivity of Nanoporous Carbon,” Materials Science, Vol. 38, No. 4, 2002, pp. 570-575. doi:10.1023/A:1022970818229
[12] A. Madroñero, “Possibilities for the Vapour-Liquid-Solid Model in the Vapour-Grown Carbon Fibre Growth Process,” Journal of Materials Science, Vol. 30, No. 8, 1995, pp. 2061-2066. doi:10.1007/BF00353034
[13] Ph. Serp, A. Madroñero and J. L. Figueiredo, “Production of Vapour-Grown Carbon Fibres: Influence of the Catalyst Precursor and Operating Conditions,” Fuel, Vol. 78, No. 7, 1999, pp. 837-844. doi:10.1016/S0016-2361(98)00216-6
[14] A. Madroñero and M. Verdú, “Hydrogen Content Evaluation in Vapour-Grown Carbon Fibres by SIMS,” Carbon, Vol. 33, No. 3, 1995, pp. 247-251. doi:10.1016/0008-6223(94)00139-Q
[15] L. H. Peebles Jr., “Carbon Fibres: Structure and Mechanical Properties,” International Materials Reviews, Vol. 39, No. 2, 1994, pp. 75-92. doi:10.1179/095066094790326248
[16] P. Vinke, M. van der Eijk, M. Verbree, A. F. Voskamp and H. van Bekkum, “Modification of the Surfaces of a Gas-Activated Carbon and a Chemically Activated Carbon with Nitric Acid, Hypochlorite, and Ammonia,” Carbon, Vol. 32, No. 4, 1994, pp. 675-686. doi:10.1016/0008-6223(94)90089-2
[17] H. Takagi, Y. Soneda, H. Hatori, Z. H. Zhu and G. Q. Lu, “Effects of Nitric Acid and Heat Treatment onHydrogen Adsorption of Single-Walled Carbon Nanotubes,” Australian Journal of Chemistry, Vol. 60, No. 7, 2007, pp. 519-523. doi:10.1071/CH06409
[18] http://www.csn.es/images/stories/actualidad_datos/ofin_11/ccnn_11/ain_cie_191_11.pdf
[19] G. U. Sumanasekera, C. K. V. Adu, G. Chen, H. E. Romero and P. C. Elkund, “Thermoelectric Study of Hydrogen Storage in Carbon Nanotubes,” Physical Review B, Vol. 65, No. 3, 2001, Article ID: 035408. doi:10.1103/PhysRevB.65.035408
[20] M. Hájek, J. Veselya and M. Cieslara, “Precision of Electrical Resistivity Measurements,” Materials Science and Engineering A, Vol. 462, No. 1-2, 2007, pp. 339-342. doi:10.1016/j.msea.2006.01.175
[21] A. Madroñero and C. Merino, “Some Geometrical Singularities in the Characterization of Vapor Grown Carbon Fibers Using Laser Diffraction Technique,” Materials Research Bulletin, Vol. 33, No. 10, 1998, pp. 1503-1515. doi:10.1016/S0025-5408(98)00144-5
[22] K. Holmberg, D. O. Shah and M. J. Schwuger, “Handbook of Applied Surface and Colloid Chemistry,” Wiley, New York, 2002.
[23] F. M. Fowkes, “Attractive Forces at Interfaces,” Industrial and Engineering Chemistry, Vol. 56, No. 12, 1964, pp. 40-52. doi:10.1021/ie50660a008
[24] Q. Shu, J. F. Wang, B. X. Peng, D. Z. Wang and G. R. Wang, “Predicting the Surface Tension of Biodiesel Fuels by a Mixture Topological Index Method, at 313 K,” Fuel, Vol. 87, No. 17-18, 2008, pp. 3586-3590. doi:10.1016/j.fuel.2008.07.007
[25] W. C. Jones and M. C. Porter, “A Method for Measuring Contact Angle on Fibres,” Journal of Colloid and Interface Science, Vol. 24, No. 1, 1967, pp. 1-3. doi:10.1016/0021-9797(67)90269-X
[26] A. Madroñero, A. Asenjo, C. Gil, M. Jaafar and A. López, “Reconnaissance of the Specific Surface of Vapour Grown Carbon Micro and Nanofibres as a Main Controller of the Sorption of Hydrogen,” Applied Surface Science, Vol. 256, No. 20, 2010, pp. 5797-5802. doi:10.1016/j.apsusc.2010.02.056
[27] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho and R. MagalhãesPaniago, “General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy,” Applied Physics Letters, Vol. 88, No. 16, 2006, Article ID: 163106. doi:10.1063/1.2196057
[28] M. Culebras, A. Madroñero, A. Cantarero, J. M. Amo, C. Domingo and A. Lopez, “Confident Methods for the Evaluation of the Hydrogen Content in Nanoporous Carbon Microfibers,” Nanoscale Research Letters, Vol. 7, 2012, pp. 588-592. doi:10.1186/1556-276X-7-588
[29] Z. W. Xu, Y. D. Huang, C. Y. Min, L. Chen and L. Chen, “Effect of Gamma-Ray Radiation on the Polyacrylonitrile Based Carbon Fibers,” Radiation Physics and Chemistry, Vol. 79, No. 8, 2010, pp. 839-843. doi:10.1016/j.radphyschem.2010.03.002
[30] V. Skakalova, U. Dettlaff-Weglikowska and S. Roth, “Gamma-Irradiated and Functionalized Single Wall Nanotubes,” Diamond and Related Materials, Vol. 13, No. 2, 2004, pp. 296-298. doi:10.1016/j.diamond.2003.11.003
[31] S. Suzuki and Y. Kobayashi, “Healing of Low-Energy Irradiation-Induced Defects in Single-Walled Carbon Nanotubes at Room Temperature,” Journal of Physical Chemistry C, Vol. 111, No. 12, 2007, pp. 4524-4528. doi:10.1021/jp067398r
[32] A. P. Voit, E. A. Evard and I. E. Gabis, “Effect of Sorbed Hydrogen on the Conductivity of Nanoporous Carbon,” Materials Science, Vol. 38, No. 4, 2002, pp. 570-575. doi:10.1023/A:1022970818229
[33] S. Lyu, D. Jung, K. Ahn, H. Lee, N. Lee, Y. Park and J. Sok, “Purification of Single-Walled Carbon Nanotubes by HCl Treatment and Analysis of the Field Emission Property,” Journal of Korean Institute of Metals and Materials, Vol. 48, No. 4, 2010, pp. 335-341. doi:10.3365/KJMM.2010.48.04.335
[34] M. Hulmana, V. Skákalová, S. Roth and H. Kuzmany, “Raman Spectroscopy of Single-Wall Carbon Nanotubes and Graphite Irradiated by γ Rays,” Journal of Applied Physics, Vol. 98, No. 2, 2005, Article ID: 024311. doi:10.1063/1.1984080
[35] Sh. Michaelson, O. Ternyak and A. Hoffman, “Correlation between Diamond Grain Size and Hydrogen Retention in Diamond Films Studied by Scanning Electron Microscopy and Secondary Ion Mass Spectroscopy,” Applied Physics Letters, Vol. 90, No. 3, 2007, Article ID: 031914. doi:10.1063/1.2432996

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.