Structure and Thermoelectric Properties of Nanostructured (Bi, Sb)2Te3 (Review)

Abstract

The investigation of the structure and thermoelectric properties of nanostructured solid solutions (Bi, Sb)2Te3 p-type has been carried out. The samples were obtained by grinding of original compositions in a planetary ball mill and by spark plasma sintering (SPS). Initial powder has an average particle size of 10 - 12 nm according to transmission electron microscopy, and the size of the coherent scattering region (CSR) obtained by X-ray line broadening. During sintering at Ts = 250°C - 400°C, the grain size and CSR increased, which was associated with the processes of recrystallization. The maximum of size distribution of CSR shifts to larger sizes when Ts increases so that no broadening of X-ray lines at Ts = 400°C can take place. At higher Ts, the emergence of new nanograins is observed. The formation of nanograins is conditioned by reducing of quantity of the intrinsic point defects produced in the grinding of the source materials. The study of the electrical conductivity and the Hall effect in a single crystal allows to estimate the mean free path of the holes-L in the single crystal Bi0.5Sb1.5Te3 which at room temperature is 2 - 5 nm (it is much smaller than the dimensions of CSR in the samples). The method for evaluation of L in polycrystalline samples is proposed. At room temperature, L is close to the mean free path in single crystals. Scattering parameter holes in SPS samples obtained from the temperature dependence of the Seebeck coefficient are within the measurement error equal to the parameter of the scattering of holes in a single crystal. The figure of merit ZT of SPS samples as a function of composition and sintering temperature has been investigated. Maximum ZT, equal to 1.05 at room temperature, is obtained for the composition Bi0.4Sb1.6Te3 at Ts = 500°C and a pressure of 50 MPa. The causes of an apparent increase in thermoelectric efficiency are discussed.

Share and Cite:

I. Drabkin, V. Karataev, V. Osvenski, A. Sorokin, G. Pivovarov and N. Tabachkova, "Structure and Thermoelectric Properties of Nanostructured (Bi, Sb)2Te3 (Review)," Advances in Materials Physics and Chemistry, Vol. 3 No. 2, 2013, pp. 119-132. doi: 10.4236/ampc.2013.32018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Poudel, Q. Hao, Y. Ma, X. Y. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen and Z. F. Ren, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, Vol. 320, No. 5876, 2008, pp. 634-638. doi:10.1126/science.1156446
[2] S.J. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma and H. Hоng, “Р-Type Bi0,4Sb1,6Te3 Nanocomposites with Enhanced Figure of Merit,” Applied Physics Letters, Vol. 96, No. 182104, 2008, pp. 456-459.
[3] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, “Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects,” Energy & Environmental Science, Vol. 2, No. 5, 2009, pp. 466-479. doi:10.1039/b822664b
[4] Y. Lan, A. J. Minnich, G. Chen and Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach,” Advanced Functional Materials, Vol. 20, No. 3, 2010, pp. 357-376. doi:10.1002/adfm.200901512
[5] W. Liu, X. Yan, G. Chen and Z. Ren, “Recent Advances in Thermoelectric Nanocomposities,” Nano Energy, Vol. 1, No. 1, 2012, pp. 42-56. doi:10.1016/j.nanoen.2011.10.001
[6] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen, “Perspectives on Thermoelectrics: From Fundamentals to Device Applications,” Energy & Environmental Science, Vol. 5, No. 1, 2012, pp. 5147-5162.
[7] Y. Horio, H. Yamashita and T. Hayashi, “Microstructure and Crystal Orientation of Rapidly Solidified (Bi,Sb)2 (Te,Se)3 Alloys by the Liquid Quenching Technique,” Materials Transaction, Vol. 45, No. 8, 2004, pp. 27572760. doi:10.2320/matertrans.45.2757
[8] W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang and T. M. Tritt, ”Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb)2 Te3,” Nano Letters, Vol. 10, No. 9, 2010, pp. 3283-3289. doi:10.1021/nl100804a
[9] L. P. Bulat, V. B. Osvensky, G. I. Pivovarov, A. A. Snarskii and E. V. Tatyanin, “On the Effective Kinetic Coefficients of Thermoelectric Nanocomposites,” Proceedings of 6th European Conference on Thermoelectrics, Paris, 2-4 July 2008, pp. 12-1-12-6.
[10] L. P. Bulat, I. A. Drabkin, V. B. Osvensky, G. I. Pivovarov, A. A. Snarskii and E. V. Tatianin, “About Thermoelectric Properties of Bulk Nanostructures,” Thermoelectrics and Their Application, Sankt-Petersburg, 2008, pp. 39-43. (In Russian)
[11] L. P. Bulat, I. A. Drabkin, V. B. Osvensky and G. I. Pivovarov, “On Thermoelectric Properties of Materials with Nanocrystalline Structure,” Journal of Thermoelectricity, No. 4, 2008, pp. 26-34.
[12] L. P. Bulat, V. T. Bublik, I. A. Drabkin, V. V. Karatayev, V. B. Osvensky, G. I. Pivovarov, D. A. Pshenai-Severin, Е. V. Tatyanin and N. Yu. Тabachkova, “Bulk Nanostructured Thermoelectrics Based on Bismuth Telluride,” Journal of Thermoelectricity, No. 3, 2009, pp. 67-72.
[13] L. P. Bulat, G. I. Pivovarov and A. A. Snarskii, “Thermoelectrics Based on Fullerenes,” Thermoelectrics and Their Application, Sankt-Petersburg, 2006, pp. 39-40.
[14] L. P. Bulat, V. T. Bublik, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, Yu. N. Parkhomenko, G. I. Pivovarov, D. A. Pshenai-Severin and N. Yu. Tabachkova, “Bulk Nanostructured Polycrystalline p-Bi-Sb-Te Thermoelectrics Obtained by Mechanical Activation Method with Hot Pressing,” Journal of Electronic Materials, Vol. 39, No. 9, 2010, pp. 1650-1653. doi:10.1007/s11664-010-1250-0
[15] L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, Y. N. Parkhomenko, D. A. Pshenai-Severin, G. I. Pivovarov and N. Y. Tabachkova, “Energy Filtration of Charge Carriers in a Nanostructured Material Based on Bismuth Telluride,” Physics of the Solid State, Vol. 53, No. 1, 2011, pp. 29-34. doi:10.1134/S1063783411010082
[16] L. P. Bulat, D. A. Pshenai-Severin, V. V. Karatayev, V. B. Osvenskii, Yu. N. Parkhomenko, V. Lavrentev, A. Sorokin, V. D. Blank, G. I. Pivovarov, V. T. Bublik and N. Yu. Tabachkova, “Chapt. 23: Bulk Nanocrystalline Thermoelectrics Based on Bi-Sb-Te Solid Solution,” In: A. A. Hashim, Ed., The Delivery of Nanoparticles, INTECH, Rijeka, 2012, pp. 453-486.
[17] B. Yu, D. Z. Wang, G. Chen and Z. F. Ren, Y. Ma, Q. Hao, B. Poudel, G. Chen, Y. Lan, B. Yu, D. Wang and Z. Ren, “Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks,” Nano Letters, Vol. 8, No. 8, 2008, pp. 2580-2584. doi:10.1021/nl8009928
[18] V. T. Bublik, D. I. Bogomolov, Z. M. Dashevsky, I. A. Drabkin, V. V. Karataev, M. G. Lavrentiev, G. I. Pivovarov, V. B. Osvenski, A. I. Sorokin and N. Y. Tabachkova, “A Comparison of the Structure of the Thermoelectric Material Bi0.5Sb1.6Te3, Obtained by Hot Pressing and Spark Plasma Sintering,” Izvestia VUZov. Materialy Electronnoi Techniki, No. 2, 2011, pp. 61-65. (In Russian)
[19] V. T. Bublik, L. P. Bulat, V. V. Karataev, I. I. Maronchuk, V. B. Osvenski, Q. I. Pivovarov, D. A. Pshenai-Severin and N. Yu. Tabachkova, “On the Possibility of Saving the Nanostructured State in Obtaining Bulk Thermoelectric Materials Based on Bismuth and Antimony Chalcogenides,” Izvestia VUZov. Phisika, Vol. 53, No. 3/2, 2010, 37-41. (In Russian)
[20] Y. Lan, B. Poudel, Y. Ma, M. S. Dresselhaus, G. Chen and Z. Ren, “Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride,” Nano Letters, Vol. 9, No. 4, 2009, pp. 1419-1422. doi:10.1021/nl803235n
[21] B. M. Goltsman, B. A. Kudinov and I. A. Smirnov, “Semiconductor Thermoelectric Materials Based on Bi2Te3,” Nauka, Moskow, 1972, p. 320. (In Russian)
[22] A. N. Dubrovina and A. O. Teut, “Impurities in Thermoelectric Materials Based on Bi2Te3,” Izvestia AN SSSR. Neorganicheskie Materialy, Vol. 26, No. 6, 1990, pp. 1199-1203. (In Russian)
[23] L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang and W. S. Liu, “Enhanced Thermoelectric and Mechanical Properties in Textured n-Type Bi2Te3 Prepared by Spark Plasma Sintering,” Solid State Sciences, Vol. 10, No. 5, 2008, pp. 651-658. doi:10.1016/j.solidstatesciences.2007.10.022
[24] M. Stordeur, M. Srölzer, H. Sobottam and V. Rieder, “Investigation of the Valence Band Structure of Thermoelectric (Bi1-xSbx)2Te3 Single Crystals,” Physica Status Solidi (b), Vol. 150, No. 1, 1988, pp. 150-176. doi:10.1002/pssb.2221500120
[25] J. R. Drabble and R. Wolf, “Anisotropic Galvanomagnetic Effects in Semiconductors,” Proceedings of the Physical Society: Section B, Vol. 69, No. 11, 1956, pp. 11011108.
[26] L. N. Luk’yanova, V. A. Kutasov, P. P. Konstantinov and V. V. Popov, “Thermoelectric Figure-of-Merit in p-Type Bismuth-and-Antimony-Chalcogenide Based Solid Solution,” Physics of the Solid State, Vol. 52, No. 8, 2010, pp. 1599-1605. doi:10.1134/S1063783410080068
[27] V. T. Bublik, Z. M. Dashevsky, I. A. Drabkin, V. V. Karataev, V. A. Kas’yan, M. G. Lavrent’yev, V. B. Osvenski, G. I. Pivovarov, D. A. Pshenai-Severin, A. I. Sorokin, N. Yu. Tabachkova and N. Bohmstein, “Transport Properties in the Temperature Range 10 300 K Nanostructured p-Bi0.5Sb1.5Te3, Produced by Spark Plasma Sintering,” Thermoelectrics and Their Application, SanktPetersburg, 2008, pp. 39-43. (In Russian)
[28] V. I. Odelevsky, “Calculation of Generalized Conductivity of Heterogeneous Mixtures,” Journal Technicheskoi Phisiki, Vol. 21, 1951, pp. 1379-1381. (In Russian)
[29] D. Stroud, “Generalized Effective Medium Theory for the Conductivity of an Inhomogeneous Medium,” Physical Review B, Vol. 112, No. 8, 1975, pp. 3368-3373. doi:10.1103/PhysRevB.12.3368
[30] T.-K. Xia, D. Stroud, “Theory of the Hall Coefficient of Polycrystals: Application to a Simple Model for La2-x MxCuO4 (M=Sr,Ba),” Physical Review B, Vol. 37, No. 1, 1988, pp. 119-122.
[31] V. T. Bublik, Z. M. Dashevsky, I. A. Drabkin, V. V. Karataev, V. A. Kas’yan, M. G. Lavrent’yev, V. B. Osvenski, G. I. Pivovarov, D. A. Pshenai-Severin, A. I. Sorokin, N. Yu. Tabachkova and N. Bohmstein, “Thermoelectric properties of nanostructured p-Bi0.5Sb1.5Te3, Obtained by Spark Plasma Sintering,” Thermoelectrics and Their Application, Sankt-Petersburg, 2008, pp. 53-57. (In Russian)
[32] A. V. Petrov, “Method for Measuring Thermal Conductivity of Semiconductors at High Temperatures,” Sbornik trudov I i II Soveshaniy po Thermoelectrichestvu, M-L, 1963, 27-32. (In Russian)
[33] T. C. Harman, “Spesial techniques for measurement of thermoelectric properties,” Journal of Applied Physics, Vol. 29, No. 8, 1958, pp. 1373-1374. doi:10.1063/1.1723445
[34] A. Abrutin, I. Drabkin and V. Osvenski, “Corrections Used when Measuring Thermoelectric Properties by Harman Method,” Proceedings of the 2nd Conference on Thermoelectric, Krakov, 15-17 September 2004, 5p.
[35] V. N. Abrutin, I. A. Drabkin, I. I. Maronchuk and V. B. Osvenski, “Measurement of Thermoelectric Samples by Harman Method,” Thermoelectrics and Their Application, Sankt-Petersburg, 2004, pp. 303-308. (In Russian)
[36] J. J. Shen, L. P. Hu, T. J. Zhu and X. B. Zhao, ”The Texture Related Anisotropy of Thermoelectric Properties in Bismuth Telluride Based Polycrystalline Alloys,” Applied Physics Letters, Vol. 99, No. 124102, 2011, pp. 356-359.
[37] L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskiǐ and D. A. Pshenaǐ-Severin, “Effect of Boundary Scattering on the Thermal Conductivity of a Nanostructured Semiconductor Material Based on the BiXSb2-XTe3 Solid Solution,” Physics of the Solid State, Vol. 52, No. 9, 2010, pp. 1836-1841. doi:10.1134/S1063783410090088
[38] G. N. Dulnev and Yu. P. Zarichnyak, “Thermal Conductivity of Mixtures and Composites,” Energiya, 1974. (In Russian)

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.