Biodegradation of Styrene-Butadiene-Styrene Coploymer via Sugars Attached to the Polymer Chain

Abstract

A synthetic method was developed to chemically attach few molecules of simple sugars like glucose, mannose, galactose, maltose and xylose (0.09 - 0.37 wt%) and with quaternary nitrogen pendants (0.42 - 0.46 atomic%) along the polybutadiene section of polystyrene-block-polybutadiene-block-polystyrene (SBS) block copolymer. These functionalized SBS copolymers were evaluated for biodegradation using the fungal culture Aspergillus niger NCIM 1025 (ATCC 9642) and bacterial culture Pseudomonas sp. NCIM 2220, and for antimicrobial properties using bacteria E. coli DH5α and Bacillus subtilis and yeasts Pichia stipitis NCIM 3497 and P. stipitis NCIM 3499. It was conclusively demonstrated that these modified SBS block copolymers were significantly more biodegradable than the unmodified SBS; the observed weight loss after biodegradation was ~4 - 14-fold for bacterial and ~7 - 36-fold for fungal cultures with respect to the sugar content of modified SBS. Preliminary studies on antimicrobial properties of these biodegradable polymers showed a 4% - 24% decrease in growth of the microorganisms E. coli and Bacillus subtilis studied.

Share and Cite:

R. Singh, R. Gupta, M. Adsul, R. Kuhad, D. Gokhale and A. Varma, "Biodegradation of Styrene-Butadiene-Styrene Coploymer via Sugars Attached to the Polymer Chain," Advances in Materials Physics and Chemistry, Vol. 3 No. 2, 2013, pp. 112-118. doi: 10.4236/ampc.2013.32017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L A.J. Varma, J. F. Kennedy and P. Galgali, “Synthetic Polymers Functionalized by Carbohydrates: Review,” Carbohydrate Polymers, Vol. 56, No. 4, 2004, pp. 429445. doi:10.1016/j.carbpol.2004.03.007
[2] K. Merrett, W. Liu, D. Mitra, K. D. Camm, C. R. McLaughlin, Y. Liu, M. A. Watsky, F. Li, M. Griffith and D. E. Fogg, “Synthetic Neoglycopolymer-Recombinant Human Collagen Hybrids as Biomimetic Crosslinking Agents in Corneal Tissue Engineering,” Biomaterials, Vol. 30, No. 29, 2009, pp. 5403-5408. doi:10.1016/j.biomaterials.2009.06.016
[3] P. Li, Y. F. Poon, W. Li, H.-Y. Zhu, S. H.Yeap, Y. Cao, X. Qi, C. Zhou, M. Lamrani, R. W. Beuerman, E.-T. Kang, Y. Mu, C. M. Li, M. W. Chang, S. S. J. Leong and M. B. Chan-Park, “A Polycationic Antimicrobial and Biocompatible Hydrogel with Microbe Membrane Suctioning Ability,” Nature Materials, Vol. 10, No. 2, 2011, pp. 149156. doi:10.1038/nmat2915
[4] Y. Wang, G. A. Ameer, B. J. Sheppard and R. Langer, “A Tough Biodegradable Elastomer,” Nature Biotechnology, Vol. 20, 2002, pp. 602-606. doi:10.1038/nbt0602-602
[5] J. M. Yang, H. T. Lin and W. C. Lai, “Properties of Modified Hydroxyl-Terminated Polybutadiene Based Polyurethane Membrane,” Journal of Membrane Science, Vol. 208, No. 1-2, 2002, pp. 105-117. doi:10.1016/S0376-7388(02)00180-1
[6] V. P. Kirpichev and A. I. Yakubchik, “Reaction of Epoxidized cis-1,4-Polybutadiene with p-Aminodiphenylamine,” Polymer Science U.S.S.R., Vol. 11, No. 10, 1969, pp. 2610-2617. doi:10.1016/0032-3950(69)90158-0
[7] V. P. Kirpichev, A. I. Yakubchik and G. N Maglysh, “Modification of CIS-1,4-Polybutadiene with β-Naphthylamine,” Rubber Chemistry and Technology, Vol. 43, No. 5, 1970, pp. 1225-1229. doi:10.5254/1.3547320
[8] C. Alvarez, H. Bertorello and M. Strumia, “Application of Poly(Butadiene-co-Acrylic Acid)-Sucrose as Gel in the Separation of Different Substances,” Journal of Applied Polymer Science, Vol. 45, No. 1, 1992, pp. 25-27. doi:10.1002/app.1992.070450103
[9] C. Alvarez, M. Strumia and H. Bertorello, “Preparation and Properties of Polymers of Carboxylated Polybutadiene Containing Sucrose,” Polymer Bulletin, Vol. 19, No. 6, 1988, pp. 521-526. doi:10.1007/BF00283096
[10] P. Galgali, A. J.Varma, U. S. Puntambekar and D. V. Gokhale, “Towards Biodegradable Polyolefins: Strategy of Anchoring Minute Quantities of Monosaccharides and Disaccharides onto Functionalized Polystyrene, and Their Effect on Facilitating Polymer Biodegradation,” Chemical Communications, No. 23, 2002, pp. 2884-2885
[11] P. Galgali, U. S. Puntambekar, D. V. Gokhale and A. J. Varma, “Fungal Degradation of Carbohydrate-Linked Polystyrenes,” Carbohydrate Polymers, Vol. 55, No. 4, 2004, pp. 393-399. doi:10.1016/j.carbpol.2003.10.011
[12] R. Singh and A. J. Varma, “Towards Biodegradable Elastomers: Green Synthesis of Carbohydrate Functionalized Styrene-Butadiene-Styrene Copolymer by Click Chemistry,” Green Chemistry, Vol. 14, 2012, pp. 348-356. doi:10.1039/c1gc16146f
[13] R. Singh, “Carbohydrate Functionalize Synthetic Elastomers: Synthesis, Characterization and Applications,” Ph.D. Thesis, National Chemical Laboratory (CSIR), Pune, 2010.
[14] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Analytical Chemistry, Vol. 28, No. 3, 1956, pp. 350-356. doi:10.1021/ac60111a017
[15] T. R. Stratton, J. L. Rickus and J. P. Youngblood, “In Vitro Biocompatibility Studies of Antibacterial Quarternary Polymers,” Biomacromolecules, Vol. 10, No. 9, 2009, pp. 2550-2555. doi:10.1021/bm9005003
[16] T. R. Stratton, J. A. Howarter, B. C. Allison, B. M. Applegate and J. P. Youngblood, “Structure-Activity Relationships of Antibacterial and Biocompatible Copolymers,” Biomacromolecules, Vol. 11, No. 5, 2010, pp. 1286-1290. doi:10.1021/bm1000839
[17] E. R. Kenawy, S. D. Worley and R. Broughton, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review,” Biomacromolecules, Vol. 8, No. 5, 2007, pp. 1359-1384. doi:10.1021/bm061150q
[18] J. C. Tiller, G. Bonner, L. C. Pan and A. M. Klibanov, “Improving Biomaterial Properties of Collagen Films by Chemical Modification,” Biotechnology and Bioengineering, Vol. 73, No. 3, 2001, pp. 246-252. doi:10.1002/bit.1057
[19] L. Cen, K. G. Neoh and E. T. Kang, “Surface Functionalization Technique for Conferring Antibacterial Properties to Polymeric and Cellulosic Surfaces,” Langmuir, Vol. 19, No. 24, 2003, pp. 10295-10303. doi:10.1021/la035104c
[20] P. R. Joshi, J. McGuire and J. A. Neff, “Synthesis and Antibacterial Activity of Nisin-Containing Block Copolymers,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 91B, No. 1, 2009, pp. 128-134. doi:10.1002/jbm.b.31381
[21] M.S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M. F. A. Goosen and N. Mameri, “Antibacterial Activity of Chitin, Chitosan and Its Oligomers Prepared from Shrimp Shell Waste,” Food Hydrocolloids, Vol. 29, No. 1, 2012, pp. 48-56. doi:10.1016/j.foodhyd.2012.02.013

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.