Share This Article:

Transition Metal-Nonmetal in Conductivity of Ceramic Hole-Doped Cobaltites

Abstract Full-Text HTML Download Download as PDF (Size:527KB) PP. 319-323
DOI: 10.4236/jmp.2010.15045    3,941 Downloads   7,376 Views  

ABSTRACT

In bulk granulated cobaltite La1–xSrxCoO3 with the size of granules of order of 1 micron at strontium hole doping with replacement factor x = 0.35, a transition “metal-nonmetal” in the conductivity was revealed, presumably connected with AFM ordering of the moments of granules. The assumption is proved by the agreement between the experiment and results of calculation within the limits of a model offered for electron transport based on the account of in-granule double exchange Zener mechanism and intergranule mechanism of spin-polarized tunneling on the nearest neighbours with AFM exchange interaction. The calculation differs in that conductivities within granules are summarized, while total resistance of the system is represented as a sum of resistances of the granules. In addition, the existence of AFM interaction between granules is supported by the observed insensitivity of conductivity to a low external magnetic field (up to 5 kOe).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Chiang, M. Dzyuba, O. Shevchenko, A. Kozlovskii and V. Khirnyi, "Transition Metal-Nonmetal in Conductivity of Ceramic Hole-Doped Cobaltites," Journal of Modern Physics, Vol. 1 No. 5, 2010, pp. 319-323. doi: 10.4236/jmp.2010.15045.

References

[1] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Reviews of Modern Physics, Vol. 68, 1996, p. 13.
[2] V. M. Loktev and Yu. G. Pogorelov, Low Temperature Physics, Vol. 26, 2000, p. 171.
[3] Yu. A. Izyumov, Yu. N. Skryabin, Physics-Uspekhi, Vol. 44, 2001, p. 109.
[4] C. Zener, Physical Review, Vol. 82, 1951, p. 403.
[5] N. F. Mott, E. A. Davis, “Electron Processes in Non- Crystalline Materials”, Clarendon Press, Oxford, 1979.
[6] P. Sheng, B. Abeles and Y. Arie, Physical Review Letters, Vol. 31, 1973, p. 44.
[7] J. S. Helman and B. Abeles, Physical Review Letters, Vol. 37, 1976, p. 1429.
[8] J. M. D. Coey, A. E. Berkowitz, L. Balcells, F. F. Putris, and A. Barry, Physical Review Letters, Vol. 80, 1998, p. 3815.
[9] P. Raychaudhuri, K. Sheshadri, P. Taneja, S. Bandyopadhyay, S. Chaudhary and S. B. Roy, Physical Review, Vol. 59, 1999, p. 3919.
[10] M. Garsia-Hernandez, F. Guinea, A. de Andres, J. L. Martinez, C. Prieto and L. Vazquez, Physical Review, Vol. 61, 2000, p. 9549.
[11] M. I. Auslender, E. Rozenberg, A. E. Kar’kin, B. K. Chaudhuri and G. Gorodetsky, Journal of Alloys and Compounds, Vol. 326, 2001, p. 81.
[12] A. G. Gamzatov, A. B. Batdalov, O. V. Melnikov, O. Yu. Gorbenko, Izvestiya RAN, Seriya Fizicheskaya, Vol. 73, 2009, p. 1377.
[13] B. I. Belevtsev, N. T. Cherpak, I. N. Chukanova, A. I. Gubin, V. B. Krasovitsky and A. A. Lavrinovich, Journal of Physics: Condensed Matter, Vol. 14, 2002, p. 2591.
[14] Yu. N. Chiang, V. Ph. Khirnyi, O. G. Shevchenko and A. A. Kozlovskii, Low Temperature Physics, Vol. 35, 2009, p. 876.
[15] A. E. Kar’kin, D. A. Shulyatev, A. A. Arsenov, et al., Zhurnal Eksperimentalnoii i Teoreticheskoii Fiziki, Vol. 89, 1999, p. 9358.
[16] E. Rozenberg, M. I. Auslender, I. Felner and G. Gorodetsky, Journal of Applied Physics, Vol. 88, 2000, p. 2578.
[17] N. Zhang, F. Wang, W. Zhong and W. Ding, Solid State Communications, Vol. 107, 1998, p. 417.
[18] N. Zhang, W. Ding, W. Zhong, D. Xing and Y. Du, Physical Review, Vol. B 56, 1997, p. 8138.
[19] O. Ciftija, M. Luban, M. Auslender and J. H. Luscombe, Physical Review, Vol. B 60, 1999, p. 10122.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.