Catalytic Active Sites in Molybdenum Based Catalysts

Abstract

In situ metal, acid and metal-acid (bifunctional) catalytic active functions were prepared following partial reduction by hydrogen of MoO3 deposited on TiO2 at temperatures between 623 K and 673 K. The bifunctional structure is obtained following the reduction of MoO3 to MoO2. The metallic properties of MoO2 are attributed to the delocalized p electrons above the Mo atoms place along the C-axis of the deformed rutile structure of this phase and observed as a density of states at the Fermi level. Hydrogen dissociation by this metallic function and bonding of the produced H atoms to surface oxygen atoms results in the formation of Bronsted acid Mo-OH function(s). Accordingly, a bifunctional (metal-acid) MoO2-x(OH)y structure is formed on the TiO2 support. The bifunctional properties enabled to perform isomerization reactions of light naphtha hydrocarbons into branched species of higher octane number. This catalyst is proposed as a possible replacement of the commercially used Pt deposited on chlorinated alumina catalysts in which toxic chlorine is employed and benzene is produced as a byproduct of n-hexane isomerization. The acid function in this bifunctional Mo system is quenched following the addition of controlled amount of sodium. The presence of only the metallic function in this modified NaMoTi system is monitored via the hydrogenation of olefins and enabled to define the bifunctional mechanism of the hydrocarbon isomerization process performed by MoO2-x(OH)y structure.

Share and Cite:

Al-Kandari, S. , Al-Kandari, H. , Mohamed, A. , Al-Kharafi, F. and Katrib, A. (2013) Catalytic Active Sites in Molybdenum Based Catalysts. Modern Research in Catalysis, 2, 1-7. doi: 10.4236/mrc.2013.22A001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. G. Gault, “Mechanisms of Skeletal Isomerization of Hydrocarbons on Metals,” Advances in Catalysis, Vol. 30, 1980, pp. 1-95. doi:10.1016/S0360-0564(08)60325-9
[2] T. Loften and E. A. Blekkan, “Isomerization of n-Hexane on Sulphated Zirconia Modified by Noble Metals,” Applied Catalysis A: General, Vol. 299, 2006, pp. 250-257. doi:10.1016/j.apcata.2005.10.045
[3] T. Kumra, “Development of pt/SO42-/ZrO2 Catalyst for Isomerization of Light Naphtha,” Catalysis Today, Vol. 81, No. 1, 2003, pp. 57-63. doi:10.1016/S0920-5861(03)00102-0
[4] C. Travers and P. Leprince, “Petroleum Refining 3: Conversion Processes,” Editions Technip, Paris, 2001, pp. 229-256.
[5] H. Al-Kandari, A. M. Mohamed, F. Al-Kharafi, M. I. Zaki and A. Katrib, “Modification of the Catalytic Properties of MoO2-x(OH)y Dispersed on TiO2 by Pt and Cs Additives,” Applied Catalysis A: General, Vol. 417-418, 2012, pp. 298-305. doi:10.1016/j.apcata.2012.01.006
[6] H. Al-Kandari, F. Al-Kharafi and A. Katrib, “Surface Electronic Structure-Catalytic Activity of Different Mo Oxidation States for Olefins and Saturated Hydrocarbon Molecules,” Catalysis Letters, Vol. 139, No. 3-4, 2010, pp. 134-140. doi:10.1007/s10562-010-0414-0
[7] H. Al-Kandari, S. Al-Kandari, F. Al-Kharafi and A. Katrib, “Molybdenum-Based Catalysts for Upgrading Light Naphtha Linear Hydrocarbon Compounds,” Energy & Fuel, Vol. 23, No .12, 2009, pp. 5737-5742. doi:10.1021/ef900617d
[8] A. Guilino, S. Parker, F. H. Jones and R. G. Egdell, “Influence of Metal-Metal Bonds on Electron Spectra of MoO2 and WO2,” Journal of the Chemical Society, Faraday Transactions, Vol. 92, No. 12, 1996, pp. 2137-2141. doi:10.1039/ft9969202137
[9] F. H. Jones, R. G. Egdell, A. Brown and F. R. Wondre, “Surface Structure and Spectroscopy of WO2(012),” Surface Science, Vol. 374, No. 1-3, 1997, pp. 80-94.
[10] M. Yang, B. Han and H. Cheng, “First-Principles Study of Hydrogenation of Ethylene on a HxMoO3(010) Surface,” The Journal of Physical Chemistry C, Vol. 116, No. 46, 2012, pp. 24630-24638. doi:10.1021/jp308255a
[11] A. Siokou, G. Leftheriotis, S. Papaefthimiou and P. Yianoulis, “Effect of the Tungsten and Molybdenum Oxidation States on the Thermal Coloration of Amorphous WO3 and MoO3 Films,” Surface Science, Vol. 482-485, No. 1, 2001, pp. 294-299. doi:10.1016/S0039-6028(01)00714-2
[12] C. Martin, I. Martin, V. Rives, B. Grzybowska and I. Gressel, “A FTIR Spectroscopy Study of Isopropanol Reactivity on Alkali-Metal-Doped MoO3/tio2 Catalysts,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 52, No. 7, 1996, pp. 733-740. doi:10.1016/0584-8539(96)01665-0
[13] H. Pines, R. C. Olberg and V. N. Ipatieff, “Studies in the Terpene Series. VIII. Effect of Catalyst, Solvent and Temperature on the Dehydrogenation of Pinane and p-Menthane,” Journal of the American Chemical Society, Vol. 70, No. 2, 1948, pp. 533-537. doi:10.1021/ja01182a031
[14] H. Al-Kandari, F. Al-Kharafi and A. Katrib, “Isomerization Reactions of n-Hexane on Partially Reduced MoO3/ TiO2,” Journal of Molecular Catalysis A: Chemical, Vol. 287, No.1-2, 2008, pp. 128-134. doi:10.1016/j.molcata.2008.03.007
[15] C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder and G. E. Muilenberg, “Handbook of XPS,” PerkinElmer, Waltham, 1979.
[16] G. C. Bond, S. Flamerz and L. van Wijk, “Structure and Reactivity of Titania-Supported Molybdenum and Tungsten Oxides,” Catalysis Today, Vol. 1, No.1-2, 1987, pp. 229-243. doi:10.1016/0920-5861(87)80042-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.