Share This Article:

Construction, expression and binding specificity of bispecific CD3 × VEGFR-2 and CD3 × NCAM antibodies in the single chain and diabody format

Abstract Full-Text HTML Download Download as PDF (Size:914KB) PP. 654-664
DOI: 10.4236/abb.2013.45086    3,983 Downloads   6,360 Views  

ABSTRACT

Bispecific antibodies are recombinant proteins with novel immunological properties and therapeutic potential. Recombinant protein quality and activity of several bispecific antibodies comprising different variable domain combinations with respect to the parental monospecific single chain fragments (scFv) were evaluated after expression in bacteria or mammalian cells. The parental scFv proteins humanized anti-NCAM scFv, murine anti-VEGFR-2 scFv, murine and humanized anti-CD3 scFv, respectively, could successfully be expressed in E. coli, whereas the murine anti-NCAM scFv version could not be reliably detected. Bispecific CD3 × VEGFR-2 and CD3 × NCAM anti-bodies were expressed in the bispecific single chain and the single chain diabody format. However, the diabody derived from the murine anti-NCAM scFv could not efficiently be expressed in E. coli or in mammalian cells. Significant binding of the CD3 × NCAM single chain diabody comprising the humanized version of anti-CD3 and humanized version of anti-NCAM was efficient to both antigens. Nevertheless, binding of the bispecific single chain version to the NCAM antigen was inefficient in comparison to CD3 binding. In conclusion, the data could indicate that the result of scFv expression in bacteria may be predictive for the chances of success for functional expression of more complex bispecific derivatives.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Kopacek, A. , Böldicke, T. , Lergenmüller, S. , Berthold, F. , Jensen, M. , Müller, P. and Grosse-Hovest, L. (2013) Construction, expression and binding specificity of bispecific CD3 × VEGFR-2 and CD3 × NCAM antibodies in the single chain and diabody format. Advances in Bioscience and Biotechnology, 4, 654-664. doi: 10.4236/abb.2013.45086.

References

[1] Holliger, P. and Hudson, P.J. (2005) Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23, 1126-1136. doi:10.1038/nbt1142
[2] Buhler, P., Wolf, P., Gierschner, D., Schaber, I., Katzenwadel, A., Schultze-Seemann, W., Wetterauer, U., Tacke, M., Swamy, M., Schamel, W.W. and Elsasser-Beile, U. (2008) A bispecific diabody directed against prostatespecific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells. Cancer Immunology, Immunotherapy, 57, 43-52. doi:10.1007/s00262-007-0348-6
[3] Baeuerle, P.A. and Reinhardt, C. (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Research, 69, 4941-4944. doi:10.1158/0008-5472.CAN-09-0547
[4] Thakur, A. and Lum, L.G. (2010) Cancer therapy with bispecific antibodies: Clinical experience. Current Opinion of Molecular Therapy, 12, 340-349.
[5] Beckman, R.A., Weiner, L.M. and Davis, H.M. (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer, 109, 170-179. doi:10.1002/cncr.22402
[6] Toleikis, L. and Frenzel, A. (2012) Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells. Methods of Molecular Biology, 907, 59-71.
[7] Hoogenboom, H.R. (2005) Selecting and screening recombinant antibody libraries. Nature Biotechnology, 23, 11051116. doi:10.1038/nbt1126
[8] Bradbury, A.R., Sidhu, S., Dübel, S. and McCafferty, J. (2011) Beyond natural antibodies: The power of in vitro display technologies. Nature Biotechnology, 29, 245-254. doi:10.1038/nbt.1791
[9] Amann, M., D’Argouges, S., Lorenczewski, G., Brischwein, K., Kischel, R., Lutterbuese, R., Mangold, S., Rau, D., Volkland, J., Pflanz, S., Raum, T., Munz, M., Kufer, P., Schlereth, B., Baeuerle, P.A. and Friedrich, M. (2009) Antitumor activity of an EpCAM/CD3-bispecific BiTE antibody during long-term treatment of mice in the absence of T-cell anergy and sustained cytokine release. Journal of Immunotherapy, 32, 452-464. doi:10.1097/CJI.0b013e3181a1c097
[10] Asano, R., Kawaguchi, H., Watanabe, Y., Nakanishi, T., Umetsu, M., Hayashi, H., Katayose, Y., Unno, M., Kudo, T. and Kumagai, I. (2008) Diabody-based recombinant formats of humanized IgG-like bispecific antibody with effective retargeting of lymphocytes to tumor cells. Journal of Immunotherapy, 31, 752-761. doi:10.1097/CJI.0b013e3181849071
[11] Buhler, P., Molnar, E., Dopfer, E.P., Wolf, P., Gierschner, D., Wetterauer, U., Schamel, W.W. and Elsasser-Beile, U. (2009) Target-dependent T-cell activation by coligation with a PSMA x CD3 diabody induces lysis of prostate cancer cells. Journal of Therapy, 32, 565-573.
[12] Kellner, C., Bruenke, J., Stieglmaier, J., Schwemmlein, M., Schwenkert, M., Singer, H., Mentz, K., Peipp, M., Lang, P., Oduncu, F., Stockmeyer, B. and Fey, G.H. (2008) A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. Journal of Immunotherapy, 31, 871884. doi:10.1097/CJI.0b013e318186c8b4
[13] Lutterbuese, R., Raum, T., Kischel, R., Lutterbuese, P., Schlereth, B., Schaller, E., Mangold, S., Rau, D., Meier, P., Kiener, P.A., Mulgrew, K., Oberst, M.D., Hammond, S.A., Baeuerle, P.A. and Kufer, P. (2009) Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. Journal of Immunotherapy, 32, 341-352. doi:10.1097/CJI.0b013e31819b7c70
[14] Sebastian, M., Kiewe, P., Schuette, W., Brust, D., Peschel, C., Schneller, F., Ruhle, K.H., Nilius, G., Ewert, R., Lodziewski, S., Passlick, B., Sienel, W., Wiewrodt, R., Jager, M., Lindhofer, H., Friccius-Quecke, H. and Schmittel, A. (2009) Treatment of malignant pleural effusion with the trifunctional antibody catumaxomab (Removab) (antiEpCAM x Anti-CD3): results of a phase 1/2 study. Journal of Immunotherapy, 32, 195-202. doi:10.1097/CJI.0b013e318195b5bb
[15] Xiong, D., Xu, Y., Liu, H., Peng, H., Shao, X., Lai, Z., Fan, D., Yang, M., Han, J., Xie, Y., Yang, C. and Zhu, Z. (2002) Efficient inhibition of human B-cell lymphoma xenografts with an anti-CD20 x anti-CD3 bispecific diabody. Cancer Letters, 1, 77, 29-39. doi:10.1016/S0304-3835(01)00758-3
[16] Jensen, M., Ernestus, K., Kemshead, J., Klehr, M., Von Bergwelt-Baildon, M.S., Schinkothe, T., Schultze, J.L. and Berthold, F. (2003) The bispecific CD3 x NCAM antibody: A model to preactivate T cells prior to tumour cell lysis. Clinical and Experimental Immunology, 134, 253-263. doi:10.1046/j.1365-2249.2003.02300.x
[17] Grosse-Hovest, L., Brandl, M., Dohlsten, M., Kalland, T., Wilmanns, W. and Jung, G. (1999) Tumor-growth inhibition with bispecific antibody fragments in a syngeneic mouse melanoma model: The role of targeted T-cell costimulation via CD28. International Journal of Cancer, 80, 138-144. doi:10.1002/(SICI)1097-0215(19990105)80:1<138::AID-IJC25>3.0.CO;2-J
[18] Jung, G., Brandl, M., Eisner, W., Fraunberger, P., Reifenberger, G., Schlegel, U., Wiestler, O. and Wilmanns, W. (2001) Local immunotherapy of glioma patients with a combination of 2 bispecific antibody fragments and resting autologous lymphocytes: Evidence for in situ Tcell activation and therapeutic efficacy. International Journal of Cancer, 91, 225-230. doi:10.1002/1097-0215(200002)9999:9999<::AID-IJC1038>3.3.CO;2-7
[19] Chames, P. and Baty, D. (2009) Bispecific antibodies for cancer therapy: The light at the end of the tunnel? Mabs, 1, 539-547. doi:10.4161/mabs.1.6.10015
[20] Verma, R., Boleti, E. and George, A.J. (1998) Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems. Journal of Immunological Methods, 216, 165-181. doi:10.1016/S0022-1759(98)00077-5
[21] Jostock, T. and Knopf, H.P. (2012) Mammalian stable expression of biotherapeutics. Methods in Molecular Biology, 899, 227-238. doi:10.1007/978-1-61779-921-1_15
[22] Young, C.L., Britton, Z.T. and Robinson, A.S. (2012) Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnological Journal, 7, 620-634. doi:10.1002/biot.201100155
[23] Jensen, M. and Berthold, F. (2007) Targeting the neural cell adhesion molecule in cancer. Cancer Letters, 258, 921. doi:10.1016/j.canlet.2007.09.004
[24] Spannuth, W.A., Nick, A.M., Jennings, N.B., ArmaizPena, G.N., Mangala, L.S., Danes, C.G., Lin, Y.G., Merritt, W.M., Thaker, P.H., Kamat, A.A., Han, L.Y., Tonra, J.R., Coleman, R.L., Ellis, L.M. and Sood, A.K. (2009) Functional significance of VEGFR-2 on ovarian cancer cells. International Journal of Cancer, 124, 1045-1053. doi:10.1002/ijc.24028
[25] Rapisarda, A. and Melillo, G. (2012) Role of the VEGF/ VEGFR axis in cancer biology and therapy. Advanced Cancer Research, 114, 237-267.
[26] Masood, R., Cai, J., Zheng, T., Smith, D.L., Hinton, D.R. and Gill, P.S. (2001) Vascular endothelial growth factor 8VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood, 98, 1904-1913. doi:10.1182/blood.V98.6.1904
[27] Böldicke, T., Tesar, M., Griesel, C., Rohde, M., Grone, H. J., Waltenberger, J., Kollet, O., Lapidot, T., Yayon, A. and Weich, H. (2001) Anti-VEGFR-2 scFvs for cell isolation. Single-chain antibodies recognizing the human vascular endothelial growth factor receptor-2 (VEGFR-2/ flk-1) on the surface of primary endothelial cells and preselected CD34+ cells from cord blood. Stem Cells, 19, 24-36. doi:10.1634/stemcells.19-1-24
[28] Frankel, A.E., Zuckero, S.L., Mankin, A.A., Grable, M., Mitchell, K., Lee, Y.J., Neville, D.M. and Woo, J.H. (2009) Anti-CD3 recombinant diphtheria immunotoxin therapy of cutaneous T cell lymphoma. Current Drug Targets, 10, 104-109. doi:10.2174/138945009787354539
[29] Grosse-Hovest, L., Hartlapp, I., Marwan, W., Brem, G., Rammensee, H. and Jung, G. (2003) A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. European Journal of Immunology, 33, 1334-1340. doi:10.1002/eji.200323322
[30] Böldicke, T., Somplatzki, S., Sergeev, G. and Mueller, P. P. (2012) Functional inhibition of transitory proteins by intrabody-mediated retention in the endoplasmatic reticulum. Methods, 56, 338-350. doi:10.1016/j.ymeth.2011.10.008
[31] Minsky, A., Summers, R.G. and Knowles, J.R. (1986) Secretion of beta-lactamase into the periplasm of Escherichia coli: Evidence for a distinct release step associated with a conformational change. Proceedings of National Academy Science of the USA, 83, 4180-4184. doi:10.1073/pnas.83.12.4180
[32] Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. and Heldin, C. H. (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. Journal of Biological Chemistry, 269, 26988-26995.
[33] Wigler, M., Sweet, R., Sim, G.K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S. and Axel, R. (1979) Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell, 16, 777-785. doi:10.1016/0092-8674(79)90093-X
[34] Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985) Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76-85. doi:10.1016/0003-2697(85)90442-7
[35] Burnette, W.N. (1981) “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112, 195-203. doi:10.1016/0003-2697(81)90281-5
[36] Kung, P., Goldstein, G., Reinherz, E.L. and Schlossman, S.F. (1979) Monoclonal antibodies defining distinctive human T cell surface antigens. Science, 206, 347-349. doi:10.1126/science.314668
[37] Bourne, S.P., Patel, K., Walsh, F., Popham, C.J., Coakham, H.B. and Kemshead, J.T. (1991) A monoclonal antibody (ERIC-1), raised against retinoblastoma, that recognizes the neural cell adhesion molecule (NCAM) expressed on brain and tumours arising from the neuroectoderm. Journal of Neurooncology, 10, 111-119. doi:10.1007/BF00146871
[38] Whittington, H.A., Hancock, J. and Kemshead, J.T. (2001) Generation of a humanised single chain Fv (Scfv) derived from the monoclonal Eric-1 recognising the human neural cell adhesion molecule. Medical and Pediatric Oncology, 36, 243-246. doi:10.1002/1096-911X(20010101)36:1<243::AID-MPO1060>3.0.CO;2-5
[39] Pluckthun, A. (2012) Ribosome display: A perspective. Methods in Molecular Biology, 805, 3-28. doi:10.1007/978-1-61779-379-0_1

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.