Seeds as a Source of Carbon, Nitrogen, and Phosphorus for Seedling Establishment in Temperate Regions: A Synthesis

Abstract

Seeds are a source of organic (carbon, C) and mineral (nitrogen, N and phosphorus, P) nutrients for the growing seedling. There is much information on seed mass and N and P contents, and the relationship between these and seedling mass. Within the world’s temperate regions, these collectively show that N and P concentrations remain constant or rise with increase in seed mass and that seeds are larger and more nutrient-enriched in poorer soils. Seed N and P were more important than seed C in accounting for seedling mass in 85% of studies we assessed. In nutrient- and water-limited environments that are not light-limited, large seeds routinely provision the seedling with N and P that enhance C-fixation and thus general growth in the first wet season. This system is so efficient that growth response to soil nutrients may be negligible in first-year seedlings arising from seeds > 15 mg mass, N content > 5 mg and P content > 1.6 mg. The elongating taproot system absorbs nutrients and maintains water uptake as soil water retreats, enhancing the chances of survival in the first dry season. We outline an interpretative scenario for the special role of large seeds (>15 mg) in nutrient- and water-limited environments that recognizes the critical role of N and P for photosynthesis in ensuring sufficient C-supply to the rapidly descending roots for effective drought-avoidance by the young plant.

Share and Cite:

Lamont, B. and Groom, P. (2013) Seeds as a Source of Carbon, Nitrogen, and Phosphorus for Seedling Establishment in Temperate Regions: A Synthesis. American Journal of Plant Sciences, 4, 30-40. doi: 10.4236/ajps.2013.45A005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. J. Ashcroft and D. R. Murray, “The Dual Functions of the Cotyledons of Acacia iteaphylla F. Muell. (Mimosoideae),” Australian Journal of Botany, Vol. 27, No. 4, 1979, pp. 343-352. doi:10.1071/BT9790343
[2] K. Kitajima, “Relationship between Photosynthesis and Thickness of Cotyledons for Tropical Species,” Functional Ecology, Vol. 6, No. 5, 1992, pp. 582-589. doi:10.2307/2390056
[3] B. B. Lamont and P. K Groom, “Green Cotyledons of Two Hakea Species Control Seedling Mass and Morphology by Supplying Mineral Nutrients Rather than Organic Compounds,” New Phytologist, Vol. 153, No. 1, 2002, pp. 101-110. doi:10.1046/j.0028-646X.2001.00300.x
[4] D. Atkinson, “Some General Effects of Phosphorus Deficiency on Growth and Development,” New Phytologist, Vol. 72, No. 1, 1973, pp. 101-111. doi:10.1111/j.1469-8137.1973.tb02014.x
[5] M. Fenner, “Relationships between Seed Weight, Ash Content and Seedling Growth in Twenty-Four Species of Compositae,” New Phytologist, Vol. 95, No. 4, 1983, pp. 697-706. doi:10.1111/j.1469-8137.1983.tb03533.x
[6] P. J. Grubb and D. A. Coomes, “Seed Mass and Nutrient Content in Nutrient-Starved Tropical Rainforest in Venezuela,” Seed Science Research, Vol. 7, No. 3, 1997, pp. 269-280. doi:10.1017/S0960258500003627
[7] D. R. Mulligan and J. W. Patrick, “Carbon and Phosphorus Assimilation and Deployment in Eucalyptus piluaris Smith Seedlings with Special Reference to the Role of the Cotyledons,” Australian Journal of Botany, Vol. 33, No. 5, 1985, pp. 485-496. doi:10.1071/BT9850485
[8] P. Milberg and B. B. Lamont, “Seed/Cotyledon Size and Nutrient Content Play a Major Role in Early Performance of Species on Nutrient-Poor Soils,” New Phytologist, Vol. 137, No. 4, 1997, pp. 665-672. doi:10.1046/j.1469-8137.1997.00870.x
[9] M. Fenner and W. G. Lee, “Growth of Seedlings of Pasture Grasses and Legumes Deprived of Single Mineral Nutrients,” Journal of Applied Ecology, Vol. 26, No. 1, 1989, pp. 223-232. doi:10.2307/2403663
[10] B. H. McArdle, “The Structural Relationship: Regression in Biology,” Canadian Journal of Zoology, Vol. 66, No. 11, 1988, pp. 2329-2339. doi:10.1139/z88-348
[11] R. Kidson and M. Westoby, “Seed Mass and Seedling Dimensions in Relation to Seedling Establishment,” Oecologia, Vol. 125, No. 1, 2000, pp. 11-17. doi:10.1007/PL00008882
[12] N. C. W. Beadle, “Some Aspects of the Ecology and Physiology of Australian Xeromorphic Plants,” Australian Journal of Science, Vol. 30, 1968, pp. 348-355.
[13] K. J. Esler, R. M. Cowling, E. T. F. Witkowski and P. J. Mustart, “Reproductive Traits and Accumulation of Nitrogen and Phosphorus during the Development of Fruits of Protea compacta R. Br. (calcifuge) and Protea obtusifolia Buek. ex Meisn. (calcicole),” New Phytologist, Vol. 112, No. 1, 1989, pp. 109-115. doi:10.1111/j.1469-8137.1989.tb00315.x
[14] W. G. Lee and M. Fenner, “Mineral Nutrient Allocation in Seeds and Shoots of Twelve Chionochloa Species in Relation to Soil Fertility,” Journal of Ecology, Vol. 77, No. 3, 1989, pp. 704-716. doi:10.2307/2260980
[15] W. D. Stock, J. S. Pate, J. Kuo and A. P. Hansen, “Resource Control of Seed Set in Banksia laricina C. Gardner (Proteaceae),” Functional Ecology, Vol. 3, 1989, pp. 453-460. doi:10.2307/2389619
[16] D. L. Venable, “Size-Number Trade-Offs and the Variation of Seed Size with Plant Resource Status,” The American Naturalist, Vol. 140, No. 2, 1992, pp. 287-304.
[17] P. Milberg, M. A. Pérez-Fernández and B. B. Lamont, “Seedling Growth Response to Added Nutrients Depends on Seed Size in Three Woody Genera,” Journal of Ecology, Vol. 86, No. 4, 1998, pp. 624-632. doi:10.1046/j.1365-2745.1998.00283.x
[18] W. D. Stock, J. S. Pate and J. Delfs, “Influence of Seed Size and Quality on Seedling Development under Low Nutrient Conditions in Five Australian and South African Members of the Proteaceae,” Journal of Ecology, Vol. 78, No. 4, 1990, pp. 1005-1020. doi:10.2307/2260949
[19] B. B. Lamont and P. K. Groom, “Seed and Seedling Biology of the Woody-Fruited Proteaceae,” Australian Journal of Botany, Vol. 43, No. 4, 1998, pp. 387-406. doi:10.1071/BT96135
[20] G. Vaughton and M. Ramsey, “Sources and Consequences of Seed Mass Variation in Banksia marginata (Proteaceae),” Journal of Ecology, Vol. 86, No. 4, 1998, pp. 563- 573. doi:10.1046/j.1365-2745.1998.00279.x
[21] G. Vaughton and M. Ramsey, “Relationships between Seed Mass, Seed Nutrients, and Seedling Growth in Banksia cunninghamii (Proteaceae),” International Journal of Plant Science, Vol. 162, No. 3, 2001, pp. 599-606.
[22] N. J. Grundon, “Mineral Nutrition of Some Queensland Heath Plants,” Journal of Ecology, Vol. 60, No. 1, 1972, pp. 171-181. doi:10.2307/2258049
[23] J. R. Withers, “Studies on the Status of Unburnt Eucalyptus Woodland at Ocean Grove, Victoria. II. The Differential Seedling Establishment of Eucalyptus ovata Labill. and Casuarina littoralis Salisb.,” Australian Journal of Botany, Vol. 26, No. 4, 1978, pp. 465-483. doi:10.1071/BT9780465
[24] P. J. Hocking, “The Mineral Nutrition of Developing Fruits of Kennedia prostrata R. Br. ex Ait., a Perennial Australian Legume,” Australian Journal of Botany, Vol. 28, No. 6, 1980, pp. 633-644. doi:10.1071/BT9800633
[25] P. J. Hocking, “The Nutrition of Fruits of Two Proteaceous Shrubs, Grevillea wilsonii and Hakea undulata, from South-Western Australia,” Australian Journal of Botany, Vol. 30, No. 2, 1982, pp. 219-230. doi:10.1071/BT9820219
[26] J. Kuo, P. J. Hocking and J. S. Pate, “Nutrient Reserves in Seeds of Selected Proteaceous Species from South-Western Australia,” Australian Journal of Botany, Vol. 30, No. 2, 1982, pp. 231-249. doi:10.1071/BT9820231
[27] R. H. Groves, P. J. Hocking and A. McMahon, “Distribution of Biomass, Nitrogen, Phosphorus and Other Nutrients in Banksia marginata and B. ornata Shoots of Different Ages after Fire,” Australian Journal of Botany, Vol. 34, No. 6, 1986, pp. 709-725. doi:10.1071/BT9860709
[28] P. J. Hocking, “Mineral Nutrient Composition of Leaves and Fruit of Selected Species of Grevillea from South- Western Australia, with Special Reference to Grevillea leucopteris Meissn.,” Australian Journal of Botany, Vol. 34, No. 2, 1986, pp. 155-164. doi:10.1071/BT9860155
[29] P. J. Mustart and R. M. Cowling, “Seed Size: Phylogeny and Adaptation in Two Closely Related Proteaceae Species-Pairs,” Oecologia, Vol. 91, No. 2, 1992, pp. 292-295. doi:10.1007/BF00317799
[30] R. H. Groves and K. Keraitis, “Survival and Growth of Seedlings of Three Sclerophyll Species at High Levels of Phosphorus and Nitrogen,” Australian Journal of Botany, Vol. 24, No. 6, 1976, pp. 681-690. doi:10.1071/BT9760681
[31] E. T. F. Witkowski, “Nutrient Limitation of Inflorescence and Seed Production in Leucospermum parile (Proteaceae) in the Cape Fynbos,” Journal of Applied Ecology, Vol. 27, No. 1, 1990, pp. 148-158. doi:10.2307/2403574
[32] E. T. F. Witkowski and B. B. Lamont, “Disproportionate Allocation of Mineral Nutrients and Carbon between Vegetative and Reproductive Structures in Banksia hookeriana,” Oecologia, Vol. 105, No. 1, 1996, pp. 38-42. doi:10.1007/BF00328789
[33] M. L. Henery and M. Westoby, “Seed Mass and Seed Nutrient Content as Predictors of Seed Output Variation between Species,” Oikos, Vol. 92, No. 3, 2001, pp. 479-490. doi:10.1034/j.1600-0706.2001.920309.x
[34] P. K. Groom and B. B. Lamont, “Fruit and Seed Development in Two Hakea Species (Proteaceae),” Journal of Royal Society Western Australia, Vol. 87, No. 4, 2004, pp. 135-138.
[35] M. D. Denton, E. J. Veneklaas, F. M. Freimoser and H. Lambers, “Banksia Species (Proteaceae) from Severely Phosphorus-Impoverished Soils Exhibit Extreme Efficiency in the Use and Re-Mobilisation of Phosphorus,” Plant, Cell and Environment, Vol. 30, No. 12, 2007, pp. 1557-1565. doi:10.1111/j.1365-3040.2007.01733.x
[36] J. S. Pate, E. Rasins, J. Rullo and J. Kuo, “Seed Nutrient Reserves of Proteaceae with Special Reference to Protein Bodies and Their Inclusions,” Annals of Botany, Vol. 57, No. 6, 1986, pp. 747-770. doi:10.1093/oxfordjournals.aob.a087159
[37] D. T. Mitchell and N. Allsopp, “Changes in the Phosphorus Composition of Seeds of Hakea sericea (Proteaceae) during Germination under Low Phosphorus Conditions,” New Phytologist, Vol. 96, No. 2, 1984, pp. 239-247. doi:10.1111/j.1469-8137.1984.tb03560.x
[38] D. M. Richardson, B. W. van Wilgen and D. T. Mitchell, “Aspects of the Reproductive Ecology of Four Australian Hakea Species (Proteaceae) in South Africa,” Oecologia, Vol. 71, No. 3, 1987, pp. 345-354. doi:10.1007/BF00378706
[39] M. D. Cramer and J. J. Midgley, “Maintenance Costs of Serotiny Do Not Explain Weak Serotiny,” Austral Ecology, Vol. 34, No. 6, 2009, 653-662. doi:10.1111/j.1442-9993.2009.01971.x
[40] N. J. Hannon, “The Status of Nitrogen in the Hawkesbury Sandstone Soils and Their Plant Communities in the Sydney District. I. The Significance and Level of Nitrogen,” Proceedings of the Linnaean Society of New South Wales, 1956, pp. 119-143.
[41] M. B. Richards and B. B. Lamont, “Post-Fire Mortality and Water Relations of Three Congeneric Shrub Species Under Extreme Water Stress—A Trade-Off with Fecundity?” Oecologia, Vol. 107, No. 1, 1996, pp. 53-60. doi:10.1007/BF00582234
[42] N. C. W. Beadle, “Soil Phosphate and the Delimitation on Plant Communities in Eastern Australia II,” Ecology, Vol. 43, 1962, pp. 281-288. doi:10.2307/1931983
[43] R. L. Specht, P. W. Rundel, W. E. Westman, P. C. Catling, J. D. Majer and P. Greenslade, “Mediterranean-Type Ecosystems. A Data Source Book,” Kluwer Academic Publishers, Dordrecht, 1988. doi:10.1007/978-94-009-3099-5
[44] B. B. Lamont, E. T. F. Witkowski and N. J. Enright, “Post-Fire Litter Microsites: Safe for Seeds, Unsafe for Seedlings,” Ecology, Vol. 74, No. 2, 1993, pp. 501-512. doi:10.2307/1939311
[45] B. B. Lamont and N. J. Enright, “Adaptive Advantages of Aerial Seed Banks,” Plant Species Biology, Vol. 15, No. 2, 2000, pp. 157-166. doi:10.1046/j.1442-1984.2000.00036.x
[46] R. M. Cowling, J. Ojeda, B. B. Lamont, P. W. Rundel, and R. Lechmere-Oertel, “Rainfall Reliability, a Neglected Factor in Explaining Convergence and Divergence of Plant Traits in Fire-Prone Mediterranean-Climate Ecosystems,” Global Ecology and Biogeography, Vol. 14, No. 6, 2005, pp. 509-519. doi:10.1046/j.1442-1984.2000.00036.x
[47] P. K. Groom and B. B. Lamont, “Reproductive Ecology of Non-Sprouting and Re-Sprouting Hakea Species (Proteaceae) in Southwestern Australia,” In: S. D. Hopper, M. Harvey, J. Chappill and A. S. George, Eds., Gondwanan Heritage: Evolution and Conservation of the Western Australian Biota, Surrey Beatty & Sons, Chipping Norton, 2006, pp. 239-248.
[48] M. E. Hanley, P. K. Cordier, O. May and C. K. Kelly, “Seed Size and Seedling Growth: Differential Response of Australian and British Fabaceae to Nutrient Limitation,” New Phytologist, Vol. 174, No. 2, 2007, pp. 381-388. doi:10.1111/j.1469-8137.2007.02003.x
[49] P. K. Groom and B. B. Lamont, “Phosphorus Accumulation in Proteaceae Seeds: A Synthesis,” Plant and Soil, Vol. 334, No. 1-2, 2010, pp. 61-72. doi:10.1007/s11104-009-0135-6
[50] A. T. Moles, D. D. Ackerly, C. O. Webb, J. C. Tweddle, J. B. Dickie and M. Westoby, “A Brief History of Seed Size,” Science, Vol. 307, No. 5709, 2005, pp. 576-580. doi:10.1126/science.1104863
[51] E. M. Jurado and M. Westoby, “Seedling Growth in Relation to Seed Size among Species of Arid Australia,” Journal of Ecology, Vol. 80, No. 3, 1992, pp. 407-416. doi:10.2307/2260686
[52] M. R. Leishman and M. Westoby, “The Role of Seed Size in Seedling Establishment in Dry Soil Conditions: Experimental Evidence from Semi-Arid Species,” Journal of Ecology, Vol. 82, No. 2, 1994, pp. 249-258. doi:10.2307/2261293
[53] N. J. Enright and B. B. Lamont, “Survival, Growth and Water Relations of Banksia Seedlings in a Sand Mine Rehabilitation Site and Adjacent Scrub-Heath Sites,” Journal of Applied Ecology, Vol. 29, No. 3, 1992, pp. 663-671. doi:10.2307/2404474
[54] W. Schütz, P. Milberg and B. B. Lamont, “Germination Requirements and Seedling Responses to Water Availability and Soil Type in Four Eucalyptus Species,” Acta Oecologica, Vol. 23, No. 1, 2002, pp. 23-30. doi:10.1016/S1146-609X(01)01130-4
[55] J. R. Evans, “Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants,” Oecologia, Vol. 78, No. 1, 1989, pp. 9-19. doi:10.1007/BF00377192
[56] B. B. Lamont, P. K. Groom, M. B. Richards and E. T. F. Witkowski, “Recovery of Banksia and Hakea Communities after Fire—The Role of Species Identity and Functional Attributes,” Diversity and Distribution, Vol. 5, No. 1-2, 1999, pp. 15-26. doi:10.1046/j.1472-4642.1999.00032.x
[57] P. K. Groom, B. B. Lamont and I. W. Wright, “Lottery (Stochastic) and Non-Lottery (Biological) Processes Explain Recruitment Patterns Among Eight Congeneric Shrub Species in Southwestern Australia,” Journal of Mediterranean Ecology, Vol. 2, No. 1, 2001, pp. 1-14.
[58] H. Saneoka, K. Fujita and S. Ogata, “Effect of Phosphorus on Drought Tolerance in Chloris gayana Kunth and Coix lacryma L,” Soil Science and Plant Nutrition, Vol. 36, No. 2, 1990, pp. 267-274. doi:10.1080/00380768.1990.10414992
[59] R. D. Wulff, “Seed Size Variation in Desmodium paniculatum Ⅱ. Effects on Seedling Growth and Physiological Performance,” Journal of Ecology, Vol. 74, No. 1, 1986, pp. 99-114. doi:10.2307/2260351
[60] R. B. Benard and C. A. Toft, “Effect of Seed Size on Seedling Performance in a Long-Lived Desert Perennial Shrub (Ericameria nauseosa: Asteraceae),” International Journal of Plant Science, Vol. 168, No. 7, 2007, pp. 1027-1033. doi:10.1086/518942
[61] C. E. Evans and J. R. Etherington, “The Effect of Soil Water Potential on Seedling Growth of Some British Plants,” New Phytologist, Vol. 118, No. 4, 1991, pp. 571-579. doi:10.1111/j.1469-8137.1991.tb00998.x
[62] D. P. Rokich, K. A. Meney, K. W, Dixon and K. Sivasithamparam, “The Impact of Soil Disturbance on Root Development in Woodland Communities in Western Australia,” Australian Journal of Botany, Vol. 49, No. 2, 2001, pp. 169-183. doi:10.1071/BT00015
[63] F. M. Padilla and F. I. Pugnaire, “Rooting Depth and Soil Moisture Control Mediterranean Woody Seedling Survival during Drought,” Functional Ecology, Vol. 21, No. 3, 2007, pp. 489-495. doi:10.1111/j.1365-2435.2007.01267.x
[64] B. B. Lamont, “Mineral Nutrient Relations in Mediterranean Regions of California, Chile and South Africa,” In: M. T. Arroya, P. H. Zedler and M. D. Fox, Eds., Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia, Springer Verlag, New York, 1995, pp. 211-235. doi:10.1007/978-1-4612-2490-7_9
[65] M. Westoby, E. M. Jurado and M. R. Leishman, “Comparative Evolutionary Ecology of Seed Size,” Trends in Ecology and Evolution, Vol. 7, 1992, pp. 368-372. doi:10.1016/0169-5347(92)90006-W
[66] J. N. A. Lott, I. Ockenden, V. Raboy and G. D. Batten, “Phytic Acid and Phosphorus in Crop Seeds and Fruits: A Global Estimate,” Seed Science Research, Vol. 10, No. 1, 2000, pp. 11-33.
[67] J. Castro, “Seed Mass versus Seedling Performance in Scots Pine: A Maternally Dependent Trait,” New Phytologist, Vol. 144, No. 1, 1999, 153-161. doi:10.1046/j.1469-8137.1999.00495.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.